Incipient mantle plume evolution: Constraints from ancient landscapes buried beneath the North Sea
Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2017-03, Vol.18 (3), p.973-993 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geological observations that constrain the history of mantle convection are sparse despite its importance in determining vertical and horizontal plate motions, plate rheology, and magmatism. We use a suite of geological and geophysical observations from the northern North Sea to constrain evolution of the incipient Paleocene‐Eocene Icelandic plume. Well data and a three‐dimensional seismic survey are used to reconstruct a 58–55 Ma landscape now buried ∼1.5 km beneath the seabed in the Bressay region. Geochemical analyses of cuttings from wells that intersect the landscape indicate the presence of angiosperm debris. These observations, combined with presence of coarse clastic material, interpreted beach ridges, and a large dendritic drainage network, indicate that this landscape formed subaerially. Longitudinal profiles of paleo‐rivers were extracted and inverted for an uplift rate history, indicating three distinct phases of uplift and total cumulative uplift of ∼350 m. Dinoflagellate cysts in the surrounding marine stratigraphy indicate that this terrestrial landscape formed in ∼150 km/Ma.
Key Points
Sedimentary basins in the North Atlantic Ocean contain information about Paleogene vertical motions
A buried terrestrial landscape in the Bressay region was uplifted in three stages between 58 and 55 Ma
Rapid uplift and subsidence is best explained by transient asthenospheric thermal anomalies |
---|---|
ISSN: | 1525-2027 1525-2027 |
DOI: | 10.1002/2016GC006769 |