Template electrodeposition of high-performance copper oxide nanosensors for electrochemical analysis of hydrogen peroxide

We report on the facile electrodeposition of copper nanostructures on graphite lead substrate using anionic, cationic and non-ionic surfactant templates. Physical and electrochemical characterisation confirmed the influence of templates on the morphology and electrochemical catalytic activities of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2017-06, Vol.75, p.1480-1488
Hauptverfasser: Rajendra Kumar Reddy, Gajjala, Kumar, P. Suresh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1488
container_issue
container_start_page 1480
container_title Materials Science & Engineering C
container_volume 75
creator Rajendra Kumar Reddy, Gajjala
Kumar, P. Suresh
description We report on the facile electrodeposition of copper nanostructures on graphite lead substrate using anionic, cationic and non-ionic surfactant templates. Physical and electrochemical characterisation confirmed the influence of templates on the morphology and electrochemical catalytic activities of the copper electrodeposits. These electrodes were shown to be excellent electrocatalyst for the fast detection of hydrogen peroxide. A maximum sensitivity of 951.45μA/mM/cm2, LOD of 0.43μM, response time of
doi_str_mv 10.1016/j.msec.2017.02.125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1942744578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493116325851</els_id><sourcerecordid>1942744578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-6c6dc143770f3ec1ff8c393642b49cd3514c46ed25900b50f109209119a72f2a3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVIaTZp_0AORdCzHY0kfwh6KaFNAoFc0rPQSqOsFttyJW_I_vtqs0mPOQ0D7_sw8xByCawGBu3Vth4z2poz6GrGa-DNCVlB34mKgYJTsmKK95VUAs7Iec5bxtpedPwzOeO9hEZKtiL7RxznwSxIcUC7pOhwjjksIU40eroJT5tqxuRjGs1kkdo4l5XGl-CQTmaKGaccU6Yl8Y6wGxyDNQM1kxn2OeRX0t6l-IQTLfXX9hfyyZsh49e3eUH-_P71eH1b3T_c3F3_vK-s6OVStbZ1FqToOuYFWvC-t0KJVvK1VNaJBqSVLTreKMbWDfNQvmYKQJmOe27EBfl-5M4p_t1hXvQ27lK5LGtQkndSNl1fUvyYsinmnNDrOYXRpL0Gpg-29VYfbOuDbc24LrZL6dsberce0f2vvOstgR_HAJYHnwMmnW3A4tGFVFRpF8NH_H9E_5Lm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942744578</pqid></control><display><type>article</type><title>Template electrodeposition of high-performance copper oxide nanosensors for electrochemical analysis of hydrogen peroxide</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rajendra Kumar Reddy, Gajjala ; Kumar, P. Suresh</creator><creatorcontrib>Rajendra Kumar Reddy, Gajjala ; Kumar, P. Suresh</creatorcontrib><description>We report on the facile electrodeposition of copper nanostructures on graphite lead substrate using anionic, cationic and non-ionic surfactant templates. Physical and electrochemical characterisation confirmed the influence of templates on the morphology and electrochemical catalytic activities of the copper electrodeposits. These electrodes were shown to be excellent electrocatalyst for the fast detection of hydrogen peroxide. A maximum sensitivity of 951.45μA/mM/cm2, LOD of 0.43μM, response time of &lt;1s and a linearity in wide range of concentration from 1μM to 5mM were observed when sodium dodecyl sulfate was used as the template. While most of the previously reported sensors have advantages either on the facile synthesis or fast detection of analyte, our methodology enables preparation of the electrode within 120s and analysis within another 60s without any complicated procedure, thereby demonstrating one of the fastest and cost-effective method for hydrogen peroxide analysis with high sensitivity and selectivity. •A facile method for the preparation of copper nanostructures is provided using template electrodeposition.•The proposed electrochemical H2O2 sensor need &lt;5 minutes for preparation-cum-analysis, demonstrating an ultra fast method.•The sensor exhibits very high sensitivity of 951.45 μA/mM/cm2 and excellent responce time of less than 1s.•Sensor performance was evaluated in PBS and the practical application was demonstrated in human blood serum and milk samples.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2017.02.125</identifier><identifier>PMID: 28415440</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amperometric sensor ; Catalysis ; Copper ; Copper - chemistry ; Copper nanostructures ; Copper oxides ; Cost analysis ; Electrochemical analysis ; Electrochemical Techniques - methods ; Electrochemistry ; Electrodeposition ; Electrodes ; Hydrogen ; Hydrogen peroxide ; Hydrogen Peroxide - analysis ; Lead ; Linearity ; Materials science ; Nanoparticles - chemistry ; Nanosensors ; Nanostructured materials ; Response time ; Selectivity ; Sensitivity ; Sensitivity analysis ; Sensors ; Sodium ; Sodium dodecyl sulfate ; Sodium lauryl sulfate ; Substrates ; Surfactant template ; Surfactants</subject><ispartof>Materials Science &amp; Engineering C, 2017-06, Vol.75, p.1480-1488</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Jun 1, 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-6c6dc143770f3ec1ff8c393642b49cd3514c46ed25900b50f109209119a72f2a3</citedby><cites>FETCH-LOGICAL-c384t-6c6dc143770f3ec1ff8c393642b49cd3514c46ed25900b50f109209119a72f2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2017.02.125$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28415440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajendra Kumar Reddy, Gajjala</creatorcontrib><creatorcontrib>Kumar, P. Suresh</creatorcontrib><title>Template electrodeposition of high-performance copper oxide nanosensors for electrochemical analysis of hydrogen peroxide</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>We report on the facile electrodeposition of copper nanostructures on graphite lead substrate using anionic, cationic and non-ionic surfactant templates. Physical and electrochemical characterisation confirmed the influence of templates on the morphology and electrochemical catalytic activities of the copper electrodeposits. These electrodes were shown to be excellent electrocatalyst for the fast detection of hydrogen peroxide. A maximum sensitivity of 951.45μA/mM/cm2, LOD of 0.43μM, response time of &lt;1s and a linearity in wide range of concentration from 1μM to 5mM were observed when sodium dodecyl sulfate was used as the template. While most of the previously reported sensors have advantages either on the facile synthesis or fast detection of analyte, our methodology enables preparation of the electrode within 120s and analysis within another 60s without any complicated procedure, thereby demonstrating one of the fastest and cost-effective method for hydrogen peroxide analysis with high sensitivity and selectivity. •A facile method for the preparation of copper nanostructures is provided using template electrodeposition.•The proposed electrochemical H2O2 sensor need &lt;5 minutes for preparation-cum-analysis, demonstrating an ultra fast method.•The sensor exhibits very high sensitivity of 951.45 μA/mM/cm2 and excellent responce time of less than 1s.•Sensor performance was evaluated in PBS and the practical application was demonstrated in human blood serum and milk samples.</description><subject>Amperometric sensor</subject><subject>Catalysis</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Copper nanostructures</subject><subject>Copper oxides</subject><subject>Cost analysis</subject><subject>Electrochemical analysis</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - analysis</subject><subject>Lead</subject><subject>Linearity</subject><subject>Materials science</subject><subject>Nanoparticles - chemistry</subject><subject>Nanosensors</subject><subject>Nanostructured materials</subject><subject>Response time</subject><subject>Selectivity</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Sodium</subject><subject>Sodium dodecyl sulfate</subject><subject>Sodium lauryl sulfate</subject><subject>Substrates</subject><subject>Surfactant template</subject><subject>Surfactants</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVIaTZp_0AORdCzHY0kfwh6KaFNAoFc0rPQSqOsFttyJW_I_vtqs0mPOQ0D7_sw8xByCawGBu3Vth4z2poz6GrGa-DNCVlB34mKgYJTsmKK95VUAs7Iec5bxtpedPwzOeO9hEZKtiL7RxznwSxIcUC7pOhwjjksIU40eroJT5tqxuRjGs1kkdo4l5XGl-CQTmaKGaccU6Yl8Y6wGxyDNQM1kxn2OeRX0t6l-IQTLfXX9hfyyZsh49e3eUH-_P71eH1b3T_c3F3_vK-s6OVStbZ1FqToOuYFWvC-t0KJVvK1VNaJBqSVLTreKMbWDfNQvmYKQJmOe27EBfl-5M4p_t1hXvQ27lK5LGtQkndSNl1fUvyYsinmnNDrOYXRpL0Gpg-29VYfbOuDbc24LrZL6dsberce0f2vvOstgR_HAJYHnwMmnW3A4tGFVFRpF8NH_H9E_5Lm</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Rajendra Kumar Reddy, Gajjala</creator><creator>Kumar, P. Suresh</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20170601</creationdate><title>Template electrodeposition of high-performance copper oxide nanosensors for electrochemical analysis of hydrogen peroxide</title><author>Rajendra Kumar Reddy, Gajjala ; Kumar, P. Suresh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-6c6dc143770f3ec1ff8c393642b49cd3514c46ed25900b50f109209119a72f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amperometric sensor</topic><topic>Catalysis</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Copper nanostructures</topic><topic>Copper oxides</topic><topic>Cost analysis</topic><topic>Electrochemical analysis</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - analysis</topic><topic>Lead</topic><topic>Linearity</topic><topic>Materials science</topic><topic>Nanoparticles - chemistry</topic><topic>Nanosensors</topic><topic>Nanostructured materials</topic><topic>Response time</topic><topic>Selectivity</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Sodium</topic><topic>Sodium dodecyl sulfate</topic><topic>Sodium lauryl sulfate</topic><topic>Substrates</topic><topic>Surfactant template</topic><topic>Surfactants</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajendra Kumar Reddy, Gajjala</creatorcontrib><creatorcontrib>Kumar, P. Suresh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajendra Kumar Reddy, Gajjala</au><au>Kumar, P. Suresh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Template electrodeposition of high-performance copper oxide nanosensors for electrochemical analysis of hydrogen peroxide</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>75</volume><spage>1480</spage><epage>1488</epage><pages>1480-1488</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>We report on the facile electrodeposition of copper nanostructures on graphite lead substrate using anionic, cationic and non-ionic surfactant templates. Physical and electrochemical characterisation confirmed the influence of templates on the morphology and electrochemical catalytic activities of the copper electrodeposits. These electrodes were shown to be excellent electrocatalyst for the fast detection of hydrogen peroxide. A maximum sensitivity of 951.45μA/mM/cm2, LOD of 0.43μM, response time of &lt;1s and a linearity in wide range of concentration from 1μM to 5mM were observed when sodium dodecyl sulfate was used as the template. While most of the previously reported sensors have advantages either on the facile synthesis or fast detection of analyte, our methodology enables preparation of the electrode within 120s and analysis within another 60s without any complicated procedure, thereby demonstrating one of the fastest and cost-effective method for hydrogen peroxide analysis with high sensitivity and selectivity. •A facile method for the preparation of copper nanostructures is provided using template electrodeposition.•The proposed electrochemical H2O2 sensor need &lt;5 minutes for preparation-cum-analysis, demonstrating an ultra fast method.•The sensor exhibits very high sensitivity of 951.45 μA/mM/cm2 and excellent responce time of less than 1s.•Sensor performance was evaluated in PBS and the practical application was demonstrated in human blood serum and milk samples.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28415440</pmid><doi>10.1016/j.msec.2017.02.125</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2017-06, Vol.75, p.1480-1488
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_journals_1942744578
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Amperometric sensor
Catalysis
Copper
Copper - chemistry
Copper nanostructures
Copper oxides
Cost analysis
Electrochemical analysis
Electrochemical Techniques - methods
Electrochemistry
Electrodeposition
Electrodes
Hydrogen
Hydrogen peroxide
Hydrogen Peroxide - analysis
Lead
Linearity
Materials science
Nanoparticles - chemistry
Nanosensors
Nanostructured materials
Response time
Selectivity
Sensitivity
Sensitivity analysis
Sensors
Sodium
Sodium dodecyl sulfate
Sodium lauryl sulfate
Substrates
Surfactant template
Surfactants
title Template electrodeposition of high-performance copper oxide nanosensors for electrochemical analysis of hydrogen peroxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Template%20electrodeposition%20of%20high-performance%20copper%20oxide%20nanosensors%20for%20electrochemical%20analysis%20of%20hydrogen%20peroxide&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Rajendra%20Kumar%20Reddy,%20Gajjala&rft.date=2017-06-01&rft.volume=75&rft.spage=1480&rft.epage=1488&rft.pages=1480-1488&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2017.02.125&rft_dat=%3Cproquest_cross%3E1942744578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942744578&rft_id=info:pmid/28415440&rft_els_id=S0928493116325851&rfr_iscdi=true