Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai‐Tibetan Plateau

Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing‐season fluxes of CO2, CH4, and N2O at a large thermoka...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-09, Vol.44 (17), p.8945-8952
Hauptverfasser: Mu, C. C., Abbott, B. W., Zhao, Q., Su, H., Wang, S. F., Wu, Q. B., Zhang, T. J., Wu, X. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8952
container_issue 17
container_start_page 8945
container_title Geophysical research letters
container_volume 44
creator Mu, C. C.
Abbott, B. W.
Zhao, Q.
Su, H.
Wang, S. F.
Wu, Q. B.
Zhang, T. J.
Wu, X. D.
description Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing‐season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai‐Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing‐season carbon sink to a weak source but decreasing feature level CH4 and N2O flux. Temperature‐corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5‐fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high‐temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important noncarbon permafrost climate feedback. Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux. Little to no vegetation recovery after stabilization suggests potentially large net carbon losses. High N2O flux compared to Arctic and Boreal systems suggests noncarbon permafrost climate feedback. Key Points Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux Little to no vegetation recovery after stabilization suggests potentially large net carbon losses High N2O flux compared to Arctic and Boreal systems suggest non‐carbon permafrost climate feedback
doi_str_mv 10.1002/2017GL074338
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1942634300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942634300</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2265-a34ecf60da0cb053879c26b124cbb4fcb41be2afdb026a9efdf8abd9dab86e553</originalsourceid><addsrcrecordid>eNpNkEtLBDEQhIMouK7e_AEBz6udx7yOsugqLL7Q89DJ9LgjY2ZMMog3L979jf4SI3rwVE1RVFMfY4cCjgWAPJEgitUaCq1UucVmotJ6UQIU22wGUKVbFvku2wvhCQAUKDFjHzfkn7H1Q4jcDn2PYyAeNl0bA8d-7BzxOLnGI48DR27Rm8HxMEzeEjdT5J6ayVLgV_Kao2v48kInrydMPSkZN8Td4JN4x28797jB7uv9874zFNHxmx4j4bTPdlrsAx386Zw9nJ_dLy8W6-vV5fJ0vRilzLMFKk22zaFBsAYyVRaVlbkRUltjdGuNFoYkto0BmWNFbdOWaJqqQVPmlGVqzo5-e0c_vEwUYv2Ulrj0sk6wZK60SmDmTP6mXrue3urRd8_o32oB9Q_l-j_lenW3znJRZOobLr10MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942634300</pqid></control><display><type>article</type><title>Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai‐Tibetan Plateau</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Mu, C. C. ; Abbott, B. W. ; Zhao, Q. ; Su, H. ; Wang, S. F. ; Wu, Q. B. ; Zhang, T. J. ; Wu, X. D.</creator><creatorcontrib>Mu, C. C. ; Abbott, B. W. ; Zhao, Q. ; Su, H. ; Wang, S. F. ; Wu, Q. B. ; Zhang, T. J. ; Wu, X. D.</creatorcontrib><description>Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing‐season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai‐Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing‐season carbon sink to a weak source but decreasing feature level CH4 and N2O flux. Temperature‐corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5‐fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high‐temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important noncarbon permafrost climate feedback. Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux. Little to no vegetation recovery after stabilization suggests potentially large net carbon losses. High N2O flux compared to Arctic and Boreal systems suggests noncarbon permafrost climate feedback. Key Points Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux Little to no vegetation recovery after stabilization suggests potentially large net carbon losses High N2O flux compared to Arctic and Boreal systems suggest non‐carbon permafrost climate feedback</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL074338</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>alpine ecosystems ; Arctic observations ; Carbon ; Carbon dioxide ; Carbon dioxide flux ; Carbon sinks ; Carbon sources ; CH4 ; Climate ; climate warming ; Collapse ; Decomposition ; Denitrification ; ecosystem respiration ; Ecosystems ; Feedback ; Fluctuations ; Fluxes ; Greenhouse effect ; Greenhouse gases ; Growing season ; Hydrology ; Methane ; Mineralization ; Nitrification ; Nitrous oxide ; Permafrost ; permafrost degradation ; Plant growth ; Plateaus ; Respiration ; Soil ; Soil hydrology ; Soil temperature ; Soils ; Temperature ; Thermokarst ; Tundra</subject><ispartof>Geophysical research letters, 2017-09, Vol.44 (17), p.8945-8952</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5861-3481 ; 0000-0002-6168-0156 ; 0000-0002-4519-8378 ; 0000-0002-9172-819X ; 0000-0003-0630-9423 ; 0000-0002-7965-0975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL074338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL074338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11519,27929,27930,45579,45580,46414,46473,46838,46897</link.rule.ids></links><search><creatorcontrib>Mu, C. C.</creatorcontrib><creatorcontrib>Abbott, B. W.</creatorcontrib><creatorcontrib>Zhao, Q.</creatorcontrib><creatorcontrib>Su, H.</creatorcontrib><creatorcontrib>Wang, S. F.</creatorcontrib><creatorcontrib>Wu, Q. B.</creatorcontrib><creatorcontrib>Zhang, T. J.</creatorcontrib><creatorcontrib>Wu, X. D.</creatorcontrib><title>Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai‐Tibetan Plateau</title><title>Geophysical research letters</title><description>Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing‐season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai‐Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing‐season carbon sink to a weak source but decreasing feature level CH4 and N2O flux. Temperature‐corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5‐fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high‐temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important noncarbon permafrost climate feedback. Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux. Little to no vegetation recovery after stabilization suggests potentially large net carbon losses. High N2O flux compared to Arctic and Boreal systems suggests noncarbon permafrost climate feedback. Key Points Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux Little to no vegetation recovery after stabilization suggests potentially large net carbon losses High N2O flux compared to Arctic and Boreal systems suggest non‐carbon permafrost climate feedback</description><subject>alpine ecosystems</subject><subject>Arctic observations</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide flux</subject><subject>Carbon sinks</subject><subject>Carbon sources</subject><subject>CH4</subject><subject>Climate</subject><subject>climate warming</subject><subject>Collapse</subject><subject>Decomposition</subject><subject>Denitrification</subject><subject>ecosystem respiration</subject><subject>Ecosystems</subject><subject>Feedback</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Growing season</subject><subject>Hydrology</subject><subject>Methane</subject><subject>Mineralization</subject><subject>Nitrification</subject><subject>Nitrous oxide</subject><subject>Permafrost</subject><subject>permafrost degradation</subject><subject>Plant growth</subject><subject>Plateaus</subject><subject>Respiration</subject><subject>Soil</subject><subject>Soil hydrology</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Temperature</subject><subject>Thermokarst</subject><subject>Tundra</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLBDEQhIMouK7e_AEBz6udx7yOsugqLL7Q89DJ9LgjY2ZMMog3L979jf4SI3rwVE1RVFMfY4cCjgWAPJEgitUaCq1UucVmotJ6UQIU22wGUKVbFvku2wvhCQAUKDFjHzfkn7H1Q4jcDn2PYyAeNl0bA8d-7BzxOLnGI48DR27Rm8HxMEzeEjdT5J6ayVLgV_Kao2v48kInrydMPSkZN8Td4JN4x28797jB7uv9874zFNHxmx4j4bTPdlrsAx386Zw9nJ_dLy8W6-vV5fJ0vRilzLMFKk22zaFBsAYyVRaVlbkRUltjdGuNFoYkto0BmWNFbdOWaJqqQVPmlGVqzo5-e0c_vEwUYv2Ulrj0sk6wZK60SmDmTP6mXrue3urRd8_o32oB9Q_l-j_lenW3znJRZOobLr10MQ</recordid><startdate>20170916</startdate><enddate>20170916</enddate><creator>Mu, C. C.</creator><creator>Abbott, B. W.</creator><creator>Zhao, Q.</creator><creator>Su, H.</creator><creator>Wang, S. F.</creator><creator>Wu, Q. B.</creator><creator>Zhang, T. J.</creator><creator>Wu, X. D.</creator><general>John Wiley &amp; Sons, Inc</general><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5861-3481</orcidid><orcidid>https://orcid.org/0000-0002-6168-0156</orcidid><orcidid>https://orcid.org/0000-0002-4519-8378</orcidid><orcidid>https://orcid.org/0000-0002-9172-819X</orcidid><orcidid>https://orcid.org/0000-0003-0630-9423</orcidid><orcidid>https://orcid.org/0000-0002-7965-0975</orcidid></search><sort><creationdate>20170916</creationdate><title>Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai‐Tibetan Plateau</title><author>Mu, C. C. ; Abbott, B. W. ; Zhao, Q. ; Su, H. ; Wang, S. F. ; Wu, Q. B. ; Zhang, T. J. ; Wu, X. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2265-a34ecf60da0cb053879c26b124cbb4fcb41be2afdb026a9efdf8abd9dab86e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>alpine ecosystems</topic><topic>Arctic observations</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide flux</topic><topic>Carbon sinks</topic><topic>Carbon sources</topic><topic>CH4</topic><topic>Climate</topic><topic>climate warming</topic><topic>Collapse</topic><topic>Decomposition</topic><topic>Denitrification</topic><topic>ecosystem respiration</topic><topic>Ecosystems</topic><topic>Feedback</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Growing season</topic><topic>Hydrology</topic><topic>Methane</topic><topic>Mineralization</topic><topic>Nitrification</topic><topic>Nitrous oxide</topic><topic>Permafrost</topic><topic>permafrost degradation</topic><topic>Plant growth</topic><topic>Plateaus</topic><topic>Respiration</topic><topic>Soil</topic><topic>Soil hydrology</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Temperature</topic><topic>Thermokarst</topic><topic>Tundra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, C. C.</creatorcontrib><creatorcontrib>Abbott, B. W.</creatorcontrib><creatorcontrib>Zhao, Q.</creatorcontrib><creatorcontrib>Su, H.</creatorcontrib><creatorcontrib>Wang, S. F.</creatorcontrib><creatorcontrib>Wu, Q. B.</creatorcontrib><creatorcontrib>Zhang, T. J.</creatorcontrib><creatorcontrib>Wu, X. D.</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, C. C.</au><au>Abbott, B. W.</au><au>Zhao, Q.</au><au>Su, H.</au><au>Wang, S. F.</au><au>Wu, Q. B.</au><au>Zhang, T. J.</au><au>Wu, X. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai‐Tibetan Plateau</atitle><jtitle>Geophysical research letters</jtitle><date>2017-09-16</date><risdate>2017</risdate><volume>44</volume><issue>17</issue><spage>8945</spage><epage>8952</epage><pages>8945-8952</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing‐season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai‐Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing‐season carbon sink to a weak source but decreasing feature level CH4 and N2O flux. Temperature‐corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5‐fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high‐temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important noncarbon permafrost climate feedback. Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux. Little to no vegetation recovery after stabilization suggests potentially large net carbon losses. High N2O flux compared to Arctic and Boreal systems suggests noncarbon permafrost climate feedback. Key Points Permafrost collapse altered soil hydrology, shifting the ecosystem from a carbon sink to carbon source but decreasing CH4 and N2O flux Little to no vegetation recovery after stabilization suggests potentially large net carbon losses High N2O flux compared to Arctic and Boreal systems suggest non‐carbon permafrost climate feedback</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017GL074338</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5861-3481</orcidid><orcidid>https://orcid.org/0000-0002-6168-0156</orcidid><orcidid>https://orcid.org/0000-0002-4519-8378</orcidid><orcidid>https://orcid.org/0000-0002-9172-819X</orcidid><orcidid>https://orcid.org/0000-0003-0630-9423</orcidid><orcidid>https://orcid.org/0000-0002-7965-0975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-09, Vol.44 (17), p.8945-8952
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1942634300
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects alpine ecosystems
Arctic observations
Carbon
Carbon dioxide
Carbon dioxide flux
Carbon sinks
Carbon sources
CH4
Climate
climate warming
Collapse
Decomposition
Denitrification
ecosystem respiration
Ecosystems
Feedback
Fluctuations
Fluxes
Greenhouse effect
Greenhouse gases
Growing season
Hydrology
Methane
Mineralization
Nitrification
Nitrous oxide
Permafrost
permafrost degradation
Plant growth
Plateaus
Respiration
Soil
Soil hydrology
Soil temperature
Soils
Temperature
Thermokarst
Tundra
title Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai‐Tibetan Plateau
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permafrost%20collapse%20shifts%20alpine%20tundra%20to%20a%20carbon%20source%20but%20reduces%20N2O%20and%20CH4%20release%20on%20the%20northern%20Qinghai%E2%80%90Tibetan%20Plateau&rft.jtitle=Geophysical%20research%20letters&rft.au=Mu,%20C.%20C.&rft.date=2017-09-16&rft.volume=44&rft.issue=17&rft.spage=8945&rft.epage=8952&rft.pages=8945-8952&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL074338&rft_dat=%3Cproquest_wiley%3E1942634300%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942634300&rft_id=info:pmid/&rfr_iscdi=true