Staffing large-scale service systems with distributional uncertainty

This paper analyzes a staffing level problem for large-scale single-station queueing systems. The system manager operates an Erlang-C queueing system with a quality-of-service constraint on the probability that a customer is queued. However, in this model, the arrival rate is uncertain in the sense...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Queueing systems 2017-10, Vol.87 (1-2), p.55-79
Hauptverfasser: Chen, Ying, Hasenbein, John J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1-2
container_start_page 55
container_title Queueing systems
container_volume 87
creator Chen, Ying
Hasenbein, John J.
description This paper analyzes a staffing level problem for large-scale single-station queueing systems. The system manager operates an Erlang-C queueing system with a quality-of-service constraint on the probability that a customer is queued. However, in this model, the arrival rate is uncertain in the sense that even the arrival-rate distribution is not completely known to the manager. Rather, the manager has an estimate of the support of the arrival-rate distribution and the mean. The goal is to determine the number of servers needed to satisfy the quality-of-service constraint. Two cases are explored. First, the constraint is enforced on an overall delay probability, given the probability that different feasible arrival-rate distributions are selected. In the second case, the constraint has to be satisfied by every possible distribution. For both problems, asymptotically optimal solutions are developed based on Halfin–Whitt type scalings.
doi_str_mv 10.1007/s11134-017-9526-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1942513089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942513089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-47f3d10f59677a00215a3867d7eee4a103256f18e755fa7b5a9484e3fa75d52e3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hF4mzw-hEnR1SeUiUOwNlyk3VxlSbFdkD997gKBy6cZqWdGe1-hFwCuwbG9E0EACEpA01rxUsKR2QGSnNaSymOyYxxpfNWsFNyFuOGMVZyVc_I3Wuyzvl-XXQ2rJHGxnZYRAxfvsm6jwm3sfj26aNofUzBr8bkh952xdg3GJL1fdqfkxNnu4gXvzon7w_3b4snunx5fF7cLmkjoExUaidaYE7VpdaWMQ7KiqrUrUZEaYEJrkoHFWqlnNUrZWtZSRR5Vq3iKObkaurdheFzxJjMZhhDPiYaqCVX-b2qzi6YXE0YYgzozC74rQ17A8wcYJkJlsmwzAGWgZzhUyZmb7_G8Kf539APT5xsUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942513089</pqid></control><display><type>article</type><title>Staffing large-scale service systems with distributional uncertainty</title><source>SpringerLink Journals</source><creator>Chen, Ying ; Hasenbein, John J.</creator><creatorcontrib>Chen, Ying ; Hasenbein, John J.</creatorcontrib><description>This paper analyzes a staffing level problem for large-scale single-station queueing systems. The system manager operates an Erlang-C queueing system with a quality-of-service constraint on the probability that a customer is queued. However, in this model, the arrival rate is uncertain in the sense that even the arrival-rate distribution is not completely known to the manager. Rather, the manager has an estimate of the support of the arrival-rate distribution and the mean. The goal is to determine the number of servers needed to satisfy the quality-of-service constraint. Two cases are explored. First, the constraint is enforced on an overall delay probability, given the probability that different feasible arrival-rate distributions are selected. In the second case, the constraint has to be satisfied by every possible distribution. For both problems, asymptotically optimal solutions are developed based on Halfin–Whitt type scalings.</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1007/s11134-017-9526-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Computer Communication Networks ; Control ; Customer services ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Queues ; Queuing theory ; Supply Chain Management ; Systems Theory ; Uncertainty analysis ; Workforce planning</subject><ispartof>Queueing systems, 2017-10, Vol.87 (1-2), p.55-79</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Queueing Systems is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-47f3d10f59677a00215a3867d7eee4a103256f18e755fa7b5a9484e3fa75d52e3</citedby><cites>FETCH-LOGICAL-c316t-47f3d10f59677a00215a3867d7eee4a103256f18e755fa7b5a9484e3fa75d52e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11134-017-9526-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11134-017-9526-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Hasenbein, John J.</creatorcontrib><title>Staffing large-scale service systems with distributional uncertainty</title><title>Queueing systems</title><addtitle>Queueing Syst</addtitle><description>This paper analyzes a staffing level problem for large-scale single-station queueing systems. The system manager operates an Erlang-C queueing system with a quality-of-service constraint on the probability that a customer is queued. However, in this model, the arrival rate is uncertain in the sense that even the arrival-rate distribution is not completely known to the manager. Rather, the manager has an estimate of the support of the arrival-rate distribution and the mean. The goal is to determine the number of servers needed to satisfy the quality-of-service constraint. Two cases are explored. First, the constraint is enforced on an overall delay probability, given the probability that different feasible arrival-rate distributions are selected. In the second case, the constraint has to be satisfied by every possible distribution. For both problems, asymptotically optimal solutions are developed based on Halfin–Whitt type scalings.</description><subject>Business and Management</subject><subject>Computer Communication Networks</subject><subject>Control</subject><subject>Customer services</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Supply Chain Management</subject><subject>Systems Theory</subject><subject>Uncertainty analysis</subject><subject>Workforce planning</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtPwzAQhC0EEqXwA7hF4mzw-hEnR1SeUiUOwNlyk3VxlSbFdkD997gKBy6cZqWdGe1-hFwCuwbG9E0EACEpA01rxUsKR2QGSnNaSymOyYxxpfNWsFNyFuOGMVZyVc_I3Wuyzvl-XXQ2rJHGxnZYRAxfvsm6jwm3sfj26aNofUzBr8bkh952xdg3GJL1fdqfkxNnu4gXvzon7w_3b4snunx5fF7cLmkjoExUaidaYE7VpdaWMQ7KiqrUrUZEaYEJrkoHFWqlnNUrZWtZSRR5Vq3iKObkaurdheFzxJjMZhhDPiYaqCVX-b2qzi6YXE0YYgzozC74rQ17A8wcYJkJlsmwzAGWgZzhUyZmb7_G8Kf539APT5xsUQ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Chen, Ying</creator><creator>Hasenbein, John J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20171001</creationdate><title>Staffing large-scale service systems with distributional uncertainty</title><author>Chen, Ying ; Hasenbein, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-47f3d10f59677a00215a3867d7eee4a103256f18e755fa7b5a9484e3fa75d52e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Business and Management</topic><topic>Computer Communication Networks</topic><topic>Control</topic><topic>Customer services</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Supply Chain Management</topic><topic>Systems Theory</topic><topic>Uncertainty analysis</topic><topic>Workforce planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Hasenbein, John J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ying</au><au>Hasenbein, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Staffing large-scale service systems with distributional uncertainty</atitle><jtitle>Queueing systems</jtitle><stitle>Queueing Syst</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>87</volume><issue>1-2</issue><spage>55</spage><epage>79</epage><pages>55-79</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>This paper analyzes a staffing level problem for large-scale single-station queueing systems. The system manager operates an Erlang-C queueing system with a quality-of-service constraint on the probability that a customer is queued. However, in this model, the arrival rate is uncertain in the sense that even the arrival-rate distribution is not completely known to the manager. Rather, the manager has an estimate of the support of the arrival-rate distribution and the mean. The goal is to determine the number of servers needed to satisfy the quality-of-service constraint. Two cases are explored. First, the constraint is enforced on an overall delay probability, given the probability that different feasible arrival-rate distributions are selected. In the second case, the constraint has to be satisfied by every possible distribution. For both problems, asymptotically optimal solutions are developed based on Halfin–Whitt type scalings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11134-017-9526-1</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-0130
ispartof Queueing systems, 2017-10, Vol.87 (1-2), p.55-79
issn 0257-0130
1572-9443
language eng
recordid cdi_proquest_journals_1942513089
source SpringerLink Journals
subjects Business and Management
Computer Communication Networks
Control
Customer services
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Queues
Queuing theory
Supply Chain Management
Systems Theory
Uncertainty analysis
Workforce planning
title Staffing large-scale service systems with distributional uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Staffing%20large-scale%20service%20systems%20with%20distributional%20uncertainty&rft.jtitle=Queueing%20systems&rft.au=Chen,%20Ying&rft.date=2017-10-01&rft.volume=87&rft.issue=1-2&rft.spage=55&rft.epage=79&rft.pages=55-79&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1007/s11134-017-9526-1&rft_dat=%3Cproquest_cross%3E1942513089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942513089&rft_id=info:pmid/&rfr_iscdi=true