Operational modal identification using variational Bayes
Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2017-05, Vol.88, p.377-398 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 398 |
---|---|
container_issue | |
container_start_page | 377 |
container_title | Mechanical systems and signal processing |
container_volume | 88 |
creator | Li, Binbin Der Kiureghian, Armen |
description | Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco.
•Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler. |
doi_str_mv | 10.1016/j.ymssp.2016.11.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1942190458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327016304654</els_id><sourcerecordid>1942190458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgqMSf4bDexBwao-CdV6gKz5dhn5KhNgp1W6rfHbWFludP53jv9_Ai5BVoCheq-LfeblIaS5aEEKCmtz8gEqKoKYFCdkwmVUhac1fSSXKXUUkqVoNWEyNWA0Yyh78x6tuldrsFhNwYf7PF5tk2h-5rtTAx_siezx3RNLrxZJ7z57VPy-fL8sXgrlqvX98XjsrC8rsaCce6N501lG8hUGYk30pm5ElwielU1HhgXxmHjBSplDgvX2Dm3tEYm-JTcne4Osf_eYhp1229jxkgalGCgqJjLrOInlY19ShG9HmLYmLjXQPUhIt3qY0T6EJEG0Bkmux5OLswf2AWMOtmAnUUXItpRuz786_8B0pBwyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942190458</pqid></control><display><type>article</type><title>Operational modal identification using variational Bayes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Binbin ; Der Kiureghian, Armen</creator><creatorcontrib>Li, Binbin ; Der Kiureghian, Armen</creatorcontrib><description>Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco.
•Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2016.11.007</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Bayesian analysis ; Civil engineering ; Computer simulation ; Error analysis ; Filtration ; Linear time-invariant system ; Mass-spring systems ; Modal identification ; Noise measurement ; Operational modal analysis ; Parameter identification ; Parameter uncertainty ; Series expansion ; State space model ; State space models ; Statistical correlation ; Statistical methods ; System identification ; Taylor series ; Uncertainty analysis ; Variational Bayes</subject><ispartof>Mechanical systems and signal processing, 2017-05, Vol.88, p.377-398</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</citedby><cites>FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2016.11.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Li, Binbin</creatorcontrib><creatorcontrib>Der Kiureghian, Armen</creatorcontrib><title>Operational modal identification using variational Bayes</title><title>Mechanical systems and signal processing</title><description>Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco.
•Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler.</description><subject>Bayesian analysis</subject><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Filtration</subject><subject>Linear time-invariant system</subject><subject>Mass-spring systems</subject><subject>Modal identification</subject><subject>Noise measurement</subject><subject>Operational modal analysis</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Series expansion</subject><subject>State space model</subject><subject>State space models</subject><subject>Statistical correlation</subject><subject>Statistical methods</subject><subject>System identification</subject><subject>Taylor series</subject><subject>Uncertainty analysis</subject><subject>Variational Bayes</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVgqMSf4bDexBwao-CdV6gKz5dhn5KhNgp1W6rfHbWFludP53jv9_Ai5BVoCheq-LfeblIaS5aEEKCmtz8gEqKoKYFCdkwmVUhac1fSSXKXUUkqVoNWEyNWA0Yyh78x6tuldrsFhNwYf7PF5tk2h-5rtTAx_siezx3RNLrxZJ7z57VPy-fL8sXgrlqvX98XjsrC8rsaCce6N501lG8hUGYk30pm5ElwielU1HhgXxmHjBSplDgvX2Dm3tEYm-JTcne4Osf_eYhp1229jxkgalGCgqJjLrOInlY19ShG9HmLYmLjXQPUhIt3qY0T6EJEG0Bkmux5OLswf2AWMOtmAnUUXItpRuz786_8B0pBwyw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Li, Binbin</creator><creator>Der Kiureghian, Armen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>Operational modal identification using variational Bayes</title><author>Li, Binbin ; Der Kiureghian, Armen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Filtration</topic><topic>Linear time-invariant system</topic><topic>Mass-spring systems</topic><topic>Modal identification</topic><topic>Noise measurement</topic><topic>Operational modal analysis</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Series expansion</topic><topic>State space model</topic><topic>State space models</topic><topic>Statistical correlation</topic><topic>Statistical methods</topic><topic>System identification</topic><topic>Taylor series</topic><topic>Uncertainty analysis</topic><topic>Variational Bayes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Binbin</creatorcontrib><creatorcontrib>Der Kiureghian, Armen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Binbin</au><au>Der Kiureghian, Armen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational modal identification using variational Bayes</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>88</volume><spage>377</spage><epage>398</epage><pages>377-398</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco.
•Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2016.11.007</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2017-05, Vol.88, p.377-398 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_1942190458 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bayesian analysis Civil engineering Computer simulation Error analysis Filtration Linear time-invariant system Mass-spring systems Modal identification Noise measurement Operational modal analysis Parameter identification Parameter uncertainty Series expansion State space model State space models Statistical correlation Statistical methods System identification Taylor series Uncertainty analysis Variational Bayes |
title | Operational modal identification using variational Bayes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20modal%20identification%20using%20variational%20Bayes&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Li,%20Binbin&rft.date=2017-05-01&rft.volume=88&rft.spage=377&rft.epage=398&rft.pages=377-398&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2016.11.007&rft_dat=%3Cproquest_cross%3E1942190458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942190458&rft_id=info:pmid/&rft_els_id=S0888327016304654&rfr_iscdi=true |