Operational modal identification using variational Bayes

Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2017-05, Vol.88, p.377-398
Hauptverfasser: Li, Binbin, Der Kiureghian, Armen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue
container_start_page 377
container_title Mechanical systems and signal processing
container_volume 88
creator Li, Binbin
Der Kiureghian, Armen
description Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco. •Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler.
doi_str_mv 10.1016/j.ymssp.2016.11.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1942190458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327016304654</els_id><sourcerecordid>1942190458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgqMSf4bDexBwao-CdV6gKz5dhn5KhNgp1W6rfHbWFludP53jv9_Ai5BVoCheq-LfeblIaS5aEEKCmtz8gEqKoKYFCdkwmVUhac1fSSXKXUUkqVoNWEyNWA0Yyh78x6tuldrsFhNwYf7PF5tk2h-5rtTAx_siezx3RNLrxZJ7z57VPy-fL8sXgrlqvX98XjsrC8rsaCce6N501lG8hUGYk30pm5ElwielU1HhgXxmHjBSplDgvX2Dm3tEYm-JTcne4Osf_eYhp1229jxkgalGCgqJjLrOInlY19ShG9HmLYmLjXQPUhIt3qY0T6EJEG0Bkmux5OLswf2AWMOtmAnUUXItpRuz786_8B0pBwyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942190458</pqid></control><display><type>article</type><title>Operational modal identification using variational Bayes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Binbin ; Der Kiureghian, Armen</creator><creatorcontrib>Li, Binbin ; Der Kiureghian, Armen</creatorcontrib><description>Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco. •Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2016.11.007</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Bayesian analysis ; Civil engineering ; Computer simulation ; Error analysis ; Filtration ; Linear time-invariant system ; Mass-spring systems ; Modal identification ; Noise measurement ; Operational modal analysis ; Parameter identification ; Parameter uncertainty ; Series expansion ; State space model ; State space models ; Statistical correlation ; Statistical methods ; System identification ; Taylor series ; Uncertainty analysis ; Variational Bayes</subject><ispartof>Mechanical systems and signal processing, 2017-05, Vol.88, p.377-398</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</citedby><cites>FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2016.11.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Li, Binbin</creatorcontrib><creatorcontrib>Der Kiureghian, Armen</creatorcontrib><title>Operational modal identification using variational Bayes</title><title>Mechanical systems and signal processing</title><description>Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco. •Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler.</description><subject>Bayesian analysis</subject><subject>Civil engineering</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Filtration</subject><subject>Linear time-invariant system</subject><subject>Mass-spring systems</subject><subject>Modal identification</subject><subject>Noise measurement</subject><subject>Operational modal analysis</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Series expansion</subject><subject>State space model</subject><subject>State space models</subject><subject>Statistical correlation</subject><subject>Statistical methods</subject><subject>System identification</subject><subject>Taylor series</subject><subject>Uncertainty analysis</subject><subject>Variational Bayes</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVgqMSf4bDexBwao-CdV6gKz5dhn5KhNgp1W6rfHbWFludP53jv9_Ai5BVoCheq-LfeblIaS5aEEKCmtz8gEqKoKYFCdkwmVUhac1fSSXKXUUkqVoNWEyNWA0Yyh78x6tuldrsFhNwYf7PF5tk2h-5rtTAx_siezx3RNLrxZJ7z57VPy-fL8sXgrlqvX98XjsrC8rsaCce6N501lG8hUGYk30pm5ElwielU1HhgXxmHjBSplDgvX2Dm3tEYm-JTcne4Osf_eYhp1229jxkgalGCgqJjLrOInlY19ShG9HmLYmLjXQPUhIt3qY0T6EJEG0Bkmux5OLswf2AWMOtmAnUUXItpRuz786_8B0pBwyw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Li, Binbin</creator><creator>Der Kiureghian, Armen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>Operational modal identification using variational Bayes</title><author>Li, Binbin ; Der Kiureghian, Armen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-233faf3b6cb10071093b8da59438eef96bf1234adebf4e99a9438dbc53c07e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayesian analysis</topic><topic>Civil engineering</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Filtration</topic><topic>Linear time-invariant system</topic><topic>Mass-spring systems</topic><topic>Modal identification</topic><topic>Noise measurement</topic><topic>Operational modal analysis</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Series expansion</topic><topic>State space model</topic><topic>State space models</topic><topic>Statistical correlation</topic><topic>Statistical methods</topic><topic>System identification</topic><topic>Taylor series</topic><topic>Uncertainty analysis</topic><topic>Variational Bayes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Binbin</creatorcontrib><creatorcontrib>Der Kiureghian, Armen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Binbin</au><au>Der Kiureghian, Armen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operational modal identification using variational Bayes</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>88</volume><spage>377</spage><epage>398</epage><pages>377-398</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Operational modal analysis is the primary tool for modal parameter identification in civil engineering. Bayesian statistics offers an ideal framework for analyzing uncertainties associated with the identified modal parameters. However, the exact Bayesian formulation is usually intractable due to the high computational demand in obtaining the posterior distributions of modal parameters. In this paper, the variational Bayes method is employed to provide an approximate solution. Unlike the Laplace approximation and Monte Carlo sampling, the variational Bayes approach provides a gradient-free algorithm to analytically approximate the posterior distributions. Working with the state-space representation of a dynamical system, the variational Bayes approach for identification of modal parameters is derived by ignoring statistical correlation between latent variables and the model parameters. In this approach, the joint distribution of the state-transition and observation matrices as well as the joint distribution of the process noise and measurement error are firstly calculated analytically using conjugate priors. The distribution of modal parameters is extracted from these obtained joint distributions using a first-order Taylor series expansion. A robust implementation of the method is discussed by using square-root filtering and Cholesky decomposition. The proposed approach is illustrated by its application to an example mass-spring system and the One Rincon Hill Tower in San Francisco. •Posterior distributions of modal parameters are obtained using the VB approach.•The VB approach tends to slightly underestimate uncertainties in modal parameters.•The uncertainties in modal parameters can be used to remove spurious modes.•The VB approach is recommended comparing to the EM algorithm and Gibbs sampler.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2016.11.007</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2017-05, Vol.88, p.377-398
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_1942190458
source ScienceDirect Journals (5 years ago - present)
subjects Bayesian analysis
Civil engineering
Computer simulation
Error analysis
Filtration
Linear time-invariant system
Mass-spring systems
Modal identification
Noise measurement
Operational modal analysis
Parameter identification
Parameter uncertainty
Series expansion
State space model
State space models
Statistical correlation
Statistical methods
System identification
Taylor series
Uncertainty analysis
Variational Bayes
title Operational modal identification using variational Bayes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operational%20modal%20identification%20using%20variational%20Bayes&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Li,%20Binbin&rft.date=2017-05-01&rft.volume=88&rft.spage=377&rft.epage=398&rft.pages=377-398&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2016.11.007&rft_dat=%3Cproquest_cross%3E1942190458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942190458&rft_id=info:pmid/&rft_els_id=S0888327016304654&rfr_iscdi=true