Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness

•Dynamics of the size-dependent FG Timoshenko beams with the von Kármán nonlinearity are studied.•The reference line simplifying the governing equations is introduced.•The results are validated through Lyapunov and wavelet spectra.•Influence of size and material grading coefficients on vibration cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2017-09, Vol.93, p.415-430
Hauptverfasser: Awrejcewicz, J., Krysko, A.V., Pavlov, S.P., Zhigalov, M.V., Krysko, V.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue
container_start_page 415
container_title Mechanical systems and signal processing
container_volume 93
creator Awrejcewicz, J.
Krysko, A.V.
Pavlov, S.P.
Zhigalov, M.V.
Krysko, V.A.
description •Dynamics of the size-dependent FG Timoshenko beams with the von Kármán nonlinearity are studied.•The reference line simplifying the governing equations is introduced.•The results are validated through Lyapunov and wavelet spectra.•Influence of size and material grading coefficients on vibration characteristics is given.•Transition from regular to chaotic beam vibrations coincides with the Ruelle-Takens-Newhouse scenario. Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf’s, Rosenstein’s, Kantz’s, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.
doi_str_mv 10.1016/j.ymssp.2017.01.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1942185434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327017300511</els_id><sourcerecordid>1942185434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6f28b272f1ad04f57e2d373afc680b9acca3e26e7ac42f859754da8a936ddbec3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwBTSWqHfxY7OPggJFvCQkGqgtxx4TJ1l78Tig8PVsCDXNTHPP6M4h5JKzkjNeX6_KXY84lILxpmS8ZFVzRCacdXXBBa-PyYS1bVtI0bBTcoa4Yox1FasnpJ8vdczeULsLuvcGaXQU_TdQCwMECyHTV99HXEJYR7oA3SP98nlJ3TaY7GPQm82OvidtwdIhxQFS9oBUb2J4p3kJPo3Tm3UAxHNy4vQG4eJvT8nb_d3r_LF4fnl4mt8-F0ZKnovaiXYhGuG4tqxyswaElY3UztQtW3TaGC1B1NBoUwnXzrpmVlnd6k7W1i7AyCm5OtwdC31sAbNaxW0aq6LiXSV4O6tkNabkIWVSREzg1JB8r9NOcab2XtVK_XpVe6-KcTV6HambAwXjA58ekkLjIRiwPoHJykb_L_8DC7WFlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942185434</pqid></control><display><type>article</type><title>Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness</title><source>Elsevier ScienceDirect Journals</source><creator>Awrejcewicz, J. ; Krysko, A.V. ; Pavlov, S.P. ; Zhigalov, M.V. ; Krysko, V.A.</creator><creatorcontrib>Awrejcewicz, J. ; Krysko, A.V. ; Pavlov, S.P. ; Zhigalov, M.V. ; Krysko, V.A.</creatorcontrib><description>•Dynamics of the size-dependent FG Timoshenko beams with the von Kármán nonlinearity are studied.•The reference line simplifying the governing equations is introduced.•The results are validated through Lyapunov and wavelet spectra.•Influence of size and material grading coefficients on vibration characteristics is given.•Transition from regular to chaotic beam vibrations coincides with the Ruelle-Takens-Newhouse scenario. Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf’s, Rosenstein’s, Kantz’s, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2017.01.047</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Chaos ; Differential equations ; Evaluation ; Fourier spectra ; Functionally gradient materials ; Geometric nonlinearity ; Liapunov exponents ; Lyapunov exponents ; Microbeams ; Modified couple stress theory ; Neural networks ; Nonlinear dynamics ; Nonlinear Timoshenko beam ; Numerical analysis ; Qualitative analysis ; Thickness ; Timoshenko beams ; Vibration ; Wavelet ; Wavelet analysis</subject><ispartof>Mechanical systems and signal processing, 2017-09, Vol.93, p.415-430</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-6f28b272f1ad04f57e2d373afc680b9acca3e26e7ac42f859754da8a936ddbec3</citedby><cites>FETCH-LOGICAL-c331t-6f28b272f1ad04f57e2d373afc680b9acca3e26e7ac42f859754da8a936ddbec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2017.01.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Awrejcewicz, J.</creatorcontrib><creatorcontrib>Krysko, A.V.</creatorcontrib><creatorcontrib>Pavlov, S.P.</creatorcontrib><creatorcontrib>Zhigalov, M.V.</creatorcontrib><creatorcontrib>Krysko, V.A.</creatorcontrib><title>Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness</title><title>Mechanical systems and signal processing</title><description>•Dynamics of the size-dependent FG Timoshenko beams with the von Kármán nonlinearity are studied.•The reference line simplifying the governing equations is introduced.•The results are validated through Lyapunov and wavelet spectra.•Influence of size and material grading coefficients on vibration characteristics is given.•Transition from regular to chaotic beam vibrations coincides with the Ruelle-Takens-Newhouse scenario. Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf’s, Rosenstein’s, Kantz’s, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.</description><subject>Algorithms</subject><subject>Chaos</subject><subject>Differential equations</subject><subject>Evaluation</subject><subject>Fourier spectra</subject><subject>Functionally gradient materials</subject><subject>Geometric nonlinearity</subject><subject>Liapunov exponents</subject><subject>Lyapunov exponents</subject><subject>Microbeams</subject><subject>Modified couple stress theory</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear Timoshenko beam</subject><subject>Numerical analysis</subject><subject>Qualitative analysis</subject><subject>Thickness</subject><subject>Timoshenko beams</subject><subject>Vibration</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEiHwBTSWqHfxY7OPggJFvCQkGqgtxx4TJ1l78Tig8PVsCDXNTHPP6M4h5JKzkjNeX6_KXY84lILxpmS8ZFVzRCacdXXBBa-PyYS1bVtI0bBTcoa4Yox1FasnpJ8vdczeULsLuvcGaXQU_TdQCwMECyHTV99HXEJYR7oA3SP98nlJ3TaY7GPQm82OvidtwdIhxQFS9oBUb2J4p3kJPo3Tm3UAxHNy4vQG4eJvT8nb_d3r_LF4fnl4mt8-F0ZKnovaiXYhGuG4tqxyswaElY3UztQtW3TaGC1B1NBoUwnXzrpmVlnd6k7W1i7AyCm5OtwdC31sAbNaxW0aq6LiXSV4O6tkNabkIWVSREzg1JB8r9NOcab2XtVK_XpVe6-KcTV6HambAwXjA58ekkLjIRiwPoHJykb_L_8DC7WFlQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Awrejcewicz, J.</creator><creator>Krysko, A.V.</creator><creator>Pavlov, S.P.</creator><creator>Zhigalov, M.V.</creator><creator>Krysko, V.A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness</title><author>Awrejcewicz, J. ; Krysko, A.V. ; Pavlov, S.P. ; Zhigalov, M.V. ; Krysko, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6f28b272f1ad04f57e2d373afc680b9acca3e26e7ac42f859754da8a936ddbec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chaos</topic><topic>Differential equations</topic><topic>Evaluation</topic><topic>Fourier spectra</topic><topic>Functionally gradient materials</topic><topic>Geometric nonlinearity</topic><topic>Liapunov exponents</topic><topic>Lyapunov exponents</topic><topic>Microbeams</topic><topic>Modified couple stress theory</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear Timoshenko beam</topic><topic>Numerical analysis</topic><topic>Qualitative analysis</topic><topic>Thickness</topic><topic>Timoshenko beams</topic><topic>Vibration</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awrejcewicz, J.</creatorcontrib><creatorcontrib>Krysko, A.V.</creatorcontrib><creatorcontrib>Pavlov, S.P.</creatorcontrib><creatorcontrib>Zhigalov, M.V.</creatorcontrib><creatorcontrib>Krysko, V.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awrejcewicz, J.</au><au>Krysko, A.V.</au><au>Pavlov, S.P.</au><au>Zhigalov, M.V.</au><au>Krysko, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>93</volume><spage>415</spage><epage>430</epage><pages>415-430</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Dynamics of the size-dependent FG Timoshenko beams with the von Kármán nonlinearity are studied.•The reference line simplifying the governing equations is introduced.•The results are validated through Lyapunov and wavelet spectra.•Influence of size and material grading coefficients on vibration characteristics is given.•Transition from regular to chaotic beam vibrations coincides with the Ruelle-Takens-Newhouse scenario. Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf’s, Rosenstein’s, Kantz’s, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2017.01.047</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2017-09, Vol.93, p.415-430
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_1942185434
source Elsevier ScienceDirect Journals
subjects Algorithms
Chaos
Differential equations
Evaluation
Fourier spectra
Functionally gradient materials
Geometric nonlinearity
Liapunov exponents
Lyapunov exponents
Microbeams
Modified couple stress theory
Neural networks
Nonlinear dynamics
Nonlinear Timoshenko beam
Numerical analysis
Qualitative analysis
Thickness
Timoshenko beams
Vibration
Wavelet
Wavelet analysis
title Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20dynamics%20of%20size%20dependent%20Timoshenko%20beams%20with%20functionally%20graded%20properties%20along%20their%20thickness&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Awrejcewicz,%20J.&rft.date=2017-09-01&rft.volume=93&rft.spage=415&rft.epage=430&rft.pages=415-430&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2017.01.047&rft_dat=%3Cproquest_cross%3E1942185434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942185434&rft_id=info:pmid/&rft_els_id=S0888327017300511&rfr_iscdi=true