High aspect ratio and low leakage current carbon nanosheets based high-k nanostructure for energy storage applications

Carbon nanosheets (CNS) are exploited to fabricate a high aspect ratio strontium titanate (STO) structure with very low leakage current density. CNS are grown by chemical vapor deposition (CVD) on 70nm layer of TiN coated Si wafers. Atomic layer deposition (ALD) is employed as a conformal deposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2017-02, Vol.169, p.1-8
Hauptverfasser: Qaid, Mohammad, Alsalhi, M.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Microelectronic engineering
container_volume 169
creator Qaid, Mohammad
Alsalhi, M.S.
description Carbon nanosheets (CNS) are exploited to fabricate a high aspect ratio strontium titanate (STO) structure with very low leakage current density. CNS are grown by chemical vapor deposition (CVD) on 70nm layer of TiN coated Si wafers. Atomic layer deposition (ALD) is employed as a conformal deposition technique for Sr-rich STO on top of 3D CNS to obtain a conformal STO layer with high area per footprint. The area enhancement resulting from CNS is investigated using electrochemical impedance spectroscopy (EIS) for conformally deposited Al2O3 thin films based TIN blanket and CNS, electrodes. It is investigated by comparing the capacitance enhancement resulted from CNS/Al2O3 capacitors with that obtained from blanket TiN/ Al2O3 capacitors. Our findings show that EIS is very promising for estimating the area increase for different nanostructures. The electrochemical spectroscopy show typical capacitor behavior for CNS based electrochemical capacitors. Moreover, solid-state electrical characterizations for CNS/STO based metal-insulator-metal (MIM) capacitors show very low leakage current density with strong breakdown and excellent area scaling through the potential window [0V, +10V]. [Display omitted] •Fabrication of high aspect ratio solid-state supercapacitors•Low leakage current density MIM capacitors as low as 10−7A/cm2•Typical capacitors behavior for the fabricated devices with strong breakdown and very low leakage current density•Excellent method to estimate and calculate the area enhancement due to CNS using electroimpednce spectroscopy (EIS)•Excellent agreement for the area calculations based on EIS with those obtained from aspect ratio analyzing
doi_str_mv 10.1016/j.mee.2016.11.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1942182794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016793171630466X</els_id><sourcerecordid>1942182794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8a851c5b254a25c879856eec565b5e61747f67ddd4fc65cc0232540c7329dc63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU6IkzhOxApVQJEqsenecieTNn3YYewU9e9xVdas5nnvjA5jjyJLRSaq5216QEzzmKZCpJkorthE1KpIpKzqazaJA5U0hVC37M77bRbrMqsn7Djv1xtu_IAQOJnQO25sy_fuh-_R7MwaOYxEaAMHQytnuTXW-Q1i8HxlPLZ8Ex2S3aUfaIQwEvLOEUeLtD5xHxydfcww7Hs4n7D-nt10Zu_x4S9O2fL9bTmbJ4uvj8_Z6yKBIpchqU0tBchVLkuTS6hVU8sKEWQlVxIroUrVVapt27KDSgJkeZSVGagib1qoiil7utgO5L5H9EFv3Ug2XtSiKXNR56op45a4bAE57wk7PVB_MHTSItNnunqrI119pquF0JFu1LxcNBi_P_ZI2kOPFrDtKaLUrev_Uf8CiFOD4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942182794</pqid></control><display><type>article</type><title>High aspect ratio and low leakage current carbon nanosheets based high-k nanostructure for energy storage applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qaid, Mohammad ; Alsalhi, M.S.</creator><creatorcontrib>Qaid, Mohammad ; Alsalhi, M.S.</creatorcontrib><description>Carbon nanosheets (CNS) are exploited to fabricate a high aspect ratio strontium titanate (STO) structure with very low leakage current density. CNS are grown by chemical vapor deposition (CVD) on 70nm layer of TiN coated Si wafers. Atomic layer deposition (ALD) is employed as a conformal deposition technique for Sr-rich STO on top of 3D CNS to obtain a conformal STO layer with high area per footprint. The area enhancement resulting from CNS is investigated using electrochemical impedance spectroscopy (EIS) for conformally deposited Al2O3 thin films based TIN blanket and CNS, electrodes. It is investigated by comparing the capacitance enhancement resulted from CNS/Al2O3 capacitors with that obtained from blanket TiN/ Al2O3 capacitors. Our findings show that EIS is very promising for estimating the area increase for different nanostructures. The electrochemical spectroscopy show typical capacitor behavior for CNS based electrochemical capacitors. Moreover, solid-state electrical characterizations for CNS/STO based metal-insulator-metal (MIM) capacitors show very low leakage current density with strong breakdown and excellent area scaling through the potential window [0V, +10V]. [Display omitted] •Fabrication of high aspect ratio solid-state supercapacitors•Low leakage current density MIM capacitors as low as 10−7A/cm2•Typical capacitors behavior for the fabricated devices with strong breakdown and very low leakage current density•Excellent method to estimate and calculate the area enhancement due to CNS using electroimpednce spectroscopy (EIS)•Excellent agreement for the area calculations based on EIS with those obtained from aspect ratio analyzing</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2016.11.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum oxide ; Area enhancement ; Atomic layer epitaxy ; Atomic structure ; Carbon nanosheets ; Chemical vapor deposition ; Current density ; EIS ; Electrochemical impedance spectroscopy ; Energy storage ; High aspect ratio ; High aspect ratio materials ; Insulators ; Leakage ; Leakage current ; Nanosheets ; Nanostructure ; Nanostructured materials ; Strontium ; Supercapacitors ; Thin films ; Three-dimensional struntium titanate</subject><ispartof>Microelectronic engineering, 2017-02, Vol.169, p.1-8</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8a851c5b254a25c879856eec565b5e61747f67ddd4fc65cc0232540c7329dc63</citedby><cites>FETCH-LOGICAL-c325t-8a851c5b254a25c879856eec565b5e61747f67ddd4fc65cc0232540c7329dc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2016.11.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Qaid, Mohammad</creatorcontrib><creatorcontrib>Alsalhi, M.S.</creatorcontrib><title>High aspect ratio and low leakage current carbon nanosheets based high-k nanostructure for energy storage applications</title><title>Microelectronic engineering</title><description>Carbon nanosheets (CNS) are exploited to fabricate a high aspect ratio strontium titanate (STO) structure with very low leakage current density. CNS are grown by chemical vapor deposition (CVD) on 70nm layer of TiN coated Si wafers. Atomic layer deposition (ALD) is employed as a conformal deposition technique for Sr-rich STO on top of 3D CNS to obtain a conformal STO layer with high area per footprint. The area enhancement resulting from CNS is investigated using electrochemical impedance spectroscopy (EIS) for conformally deposited Al2O3 thin films based TIN blanket and CNS, electrodes. It is investigated by comparing the capacitance enhancement resulted from CNS/Al2O3 capacitors with that obtained from blanket TiN/ Al2O3 capacitors. Our findings show that EIS is very promising for estimating the area increase for different nanostructures. The electrochemical spectroscopy show typical capacitor behavior for CNS based electrochemical capacitors. Moreover, solid-state electrical characterizations for CNS/STO based metal-insulator-metal (MIM) capacitors show very low leakage current density with strong breakdown and excellent area scaling through the potential window [0V, +10V]. [Display omitted] •Fabrication of high aspect ratio solid-state supercapacitors•Low leakage current density MIM capacitors as low as 10−7A/cm2•Typical capacitors behavior for the fabricated devices with strong breakdown and very low leakage current density•Excellent method to estimate and calculate the area enhancement due to CNS using electroimpednce spectroscopy (EIS)•Excellent agreement for the area calculations based on EIS with those obtained from aspect ratio analyzing</description><subject>Aluminum oxide</subject><subject>Area enhancement</subject><subject>Atomic layer epitaxy</subject><subject>Atomic structure</subject><subject>Carbon nanosheets</subject><subject>Chemical vapor deposition</subject><subject>Current density</subject><subject>EIS</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Energy storage</subject><subject>High aspect ratio</subject><subject>High aspect ratio materials</subject><subject>Insulators</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>Nanosheets</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Strontium</subject><subject>Supercapacitors</subject><subject>Thin films</subject><subject>Three-dimensional struntium titanate</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU6IkzhOxApVQJEqsenecieTNn3YYewU9e9xVdas5nnvjA5jjyJLRSaq5216QEzzmKZCpJkorthE1KpIpKzqazaJA5U0hVC37M77bRbrMqsn7Djv1xtu_IAQOJnQO25sy_fuh-_R7MwaOYxEaAMHQytnuTXW-Q1i8HxlPLZ8Ex2S3aUfaIQwEvLOEUeLtD5xHxydfcww7Hs4n7D-nt10Zu_x4S9O2fL9bTmbJ4uvj8_Z6yKBIpchqU0tBchVLkuTS6hVU8sKEWQlVxIroUrVVapt27KDSgJkeZSVGagib1qoiil7utgO5L5H9EFv3Ug2XtSiKXNR56op45a4bAE57wk7PVB_MHTSItNnunqrI119pquF0JFu1LxcNBi_P_ZI2kOPFrDtKaLUrev_Uf8CiFOD4A</recordid><startdate>20170205</startdate><enddate>20170205</enddate><creator>Qaid, Mohammad</creator><creator>Alsalhi, M.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170205</creationdate><title>High aspect ratio and low leakage current carbon nanosheets based high-k nanostructure for energy storage applications</title><author>Qaid, Mohammad ; Alsalhi, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8a851c5b254a25c879856eec565b5e61747f67ddd4fc65cc0232540c7329dc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Area enhancement</topic><topic>Atomic layer epitaxy</topic><topic>Atomic structure</topic><topic>Carbon nanosheets</topic><topic>Chemical vapor deposition</topic><topic>Current density</topic><topic>EIS</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Energy storage</topic><topic>High aspect ratio</topic><topic>High aspect ratio materials</topic><topic>Insulators</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>Nanosheets</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Strontium</topic><topic>Supercapacitors</topic><topic>Thin films</topic><topic>Three-dimensional struntium titanate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qaid, Mohammad</creatorcontrib><creatorcontrib>Alsalhi, M.S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qaid, Mohammad</au><au>Alsalhi, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High aspect ratio and low leakage current carbon nanosheets based high-k nanostructure for energy storage applications</atitle><jtitle>Microelectronic engineering</jtitle><date>2017-02-05</date><risdate>2017</risdate><volume>169</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><abstract>Carbon nanosheets (CNS) are exploited to fabricate a high aspect ratio strontium titanate (STO) structure with very low leakage current density. CNS are grown by chemical vapor deposition (CVD) on 70nm layer of TiN coated Si wafers. Atomic layer deposition (ALD) is employed as a conformal deposition technique for Sr-rich STO on top of 3D CNS to obtain a conformal STO layer with high area per footprint. The area enhancement resulting from CNS is investigated using electrochemical impedance spectroscopy (EIS) for conformally deposited Al2O3 thin films based TIN blanket and CNS, electrodes. It is investigated by comparing the capacitance enhancement resulted from CNS/Al2O3 capacitors with that obtained from blanket TiN/ Al2O3 capacitors. Our findings show that EIS is very promising for estimating the area increase for different nanostructures. The electrochemical spectroscopy show typical capacitor behavior for CNS based electrochemical capacitors. Moreover, solid-state electrical characterizations for CNS/STO based metal-insulator-metal (MIM) capacitors show very low leakage current density with strong breakdown and excellent area scaling through the potential window [0V, +10V]. [Display omitted] •Fabrication of high aspect ratio solid-state supercapacitors•Low leakage current density MIM capacitors as low as 10−7A/cm2•Typical capacitors behavior for the fabricated devices with strong breakdown and very low leakage current density•Excellent method to estimate and calculate the area enhancement due to CNS using electroimpednce spectroscopy (EIS)•Excellent agreement for the area calculations based on EIS with those obtained from aspect ratio analyzing</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2016.11.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2017-02, Vol.169, p.1-8
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_journals_1942182794
source ScienceDirect Journals (5 years ago - present)
subjects Aluminum oxide
Area enhancement
Atomic layer epitaxy
Atomic structure
Carbon nanosheets
Chemical vapor deposition
Current density
EIS
Electrochemical impedance spectroscopy
Energy storage
High aspect ratio
High aspect ratio materials
Insulators
Leakage
Leakage current
Nanosheets
Nanostructure
Nanostructured materials
Strontium
Supercapacitors
Thin films
Three-dimensional struntium titanate
title High aspect ratio and low leakage current carbon nanosheets based high-k nanostructure for energy storage applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20aspect%20ratio%20and%20low%20leakage%20current%20carbon%20nanosheets%20based%20high-k%20nanostructure%20for%20energy%20storage%20applications&rft.jtitle=Microelectronic%20engineering&rft.au=Qaid,%20Mohammad&rft.date=2017-02-05&rft.volume=169&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0167-9317&rft.eissn=1873-5568&rft_id=info:doi/10.1016/j.mee.2016.11.013&rft_dat=%3Cproquest_cross%3E1942182794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942182794&rft_id=info:pmid/&rft_els_id=S016793171630466X&rfr_iscdi=true