On the Theory of Complex Rays

The article surveys the application of complex-ray theory to the scalar Helmholtz equation in two dimensions. The first objective is to motivate a framework within which complex rays may be used to make predictions about wavefields in a wide variety of geometrical configurations. A crucial ingredien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 1999-09, Vol.41 (3), p.417-509
Hauptverfasser: Chapman, S. J., Lawry, J. M. H., Ockendon, J. R., Tew, R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 3
container_start_page 417
container_title SIAM review
container_volume 41
creator Chapman, S. J.
Lawry, J. M. H.
Ockendon, J. R.
Tew, R. H.
description The article surveys the application of complex-ray theory to the scalar Helmholtz equation in two dimensions. The first objective is to motivate a framework within which complex rays may be used to make predictions about wavefields in a wide variety of geometrical configurations. A crucial ingredient in this framework is the role played by Stokes' phenomenon in determining the regions of existence of complex rays. The identification of the Stokes surfaces emerges as a key step in the approximation procedure, and this leads to the consideration of the many characterizations of Stokes surfaces, including the adaptation and application of recent developments in exponential asymptotics to the complex Wentzel-Kramers-Brilbuin expansion of these wavefields. Examples are given for several cases of physical importance.
doi_str_mv 10.1137/S0036144599352058
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194208600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2653264</jstor_id><sourcerecordid>2653264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-38c430a93986a10b13b7065fe80c3761459e8a90139fc229cff14b70db7365513</originalsourceid><addsrcrecordid>eNplUFtLwzAUDqLgnP4AQaGIr9Vzcpo0eZThDQYDnc8liwnb6JqZdGD_vS0b-uDT4fBd-Ri7RLhDpPL-HYAkFoXQmgQHoY7YCEGLvOQAx2w0wPmAn7KzlNbQ_4r0iF3Pmqxdumy-dCF2WfDZJGy2tfvO3kyXztmJN3VyF4c7Zh9Pj_PJSz6dPb9OHqa5JQ5tTsoWBEaTVtIgLJAWJUjhnQJLZV9LaKeMBiTtLefaeo9FT_lclCSFQBqzm73vNoavnUtttQ672PSRFeqCg5J93zHDPcnGkFJ0vtrG1cbErkKohhGqfyP0mtuDsUnW1D6axq7Sn1BL0OWQf7WnrVMb4i_MpSAuC_oBKSVgrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194208600</pqid></control><display><type>article</type><title>On the Theory of Complex Rays</title><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Chapman, S. J. ; Lawry, J. M. H. ; Ockendon, J. R. ; Tew, R. H.</creator><creatorcontrib>Chapman, S. J. ; Lawry, J. M. H. ; Ockendon, J. R. ; Tew, R. H.</creatorcontrib><description>The article surveys the application of complex-ray theory to the scalar Helmholtz equation in two dimensions. The first objective is to motivate a framework within which complex rays may be used to make predictions about wavefields in a wide variety of geometrical configurations. A crucial ingredient in this framework is the role played by Stokes' phenomenon in determining the regions of existence of complex rays. The identification of the Stokes surfaces emerges as a key step in the approximation procedure, and this leads to the consideration of the many characterizations of Stokes surfaces, including the adaptation and application of recent developments in exponential asymptotics to the complex Wentzel-Kramers-Brilbuin expansion of these wavefields. Examples are given for several cases of physical importance.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/S0036144599352058</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Acoustics ; Approximation ; Caustic networks ; Coordinate systems ; Cylinders ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Geometrical optics ; Geometry ; Mathematical analysis ; Mathematics ; Optics ; Partial differential equations ; Physics ; Plane waves ; Riemann surfaces ; Sciences and techniques of general use ; Sine function ; Survey and Review ; Tangents ; Underwater sound ; Wave diffraction ; Wave reflection</subject><ispartof>SIAM review, 1999-09, Vol.41 (3), p.417-509</ispartof><rights>Copyright 1999 Society for Industrial and Applied Mathematics</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics Sep 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-38c430a93986a10b13b7065fe80c3761459e8a90139fc229cff14b70db7365513</citedby><cites>FETCH-LOGICAL-c320t-38c430a93986a10b13b7065fe80c3761459e8a90139fc229cff14b70db7365513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2653264$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2653264$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3185,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1960971$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, S. J.</creatorcontrib><creatorcontrib>Lawry, J. M. H.</creatorcontrib><creatorcontrib>Ockendon, J. R.</creatorcontrib><creatorcontrib>Tew, R. H.</creatorcontrib><title>On the Theory of Complex Rays</title><title>SIAM review</title><description>The article surveys the application of complex-ray theory to the scalar Helmholtz equation in two dimensions. The first objective is to motivate a framework within which complex rays may be used to make predictions about wavefields in a wide variety of geometrical configurations. A crucial ingredient in this framework is the role played by Stokes' phenomenon in determining the regions of existence of complex rays. The identification of the Stokes surfaces emerges as a key step in the approximation procedure, and this leads to the consideration of the many characterizations of Stokes surfaces, including the adaptation and application of recent developments in exponential asymptotics to the complex Wentzel-Kramers-Brilbuin expansion of these wavefields. Examples are given for several cases of physical importance.</description><subject>Acoustics</subject><subject>Approximation</subject><subject>Caustic networks</subject><subject>Coordinate systems</subject><subject>Cylinders</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometrical optics</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Optics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Plane waves</subject><subject>Riemann surfaces</subject><subject>Sciences and techniques of general use</subject><subject>Sine function</subject><subject>Survey and Review</subject><subject>Tangents</subject><subject>Underwater sound</subject><subject>Wave diffraction</subject><subject>Wave reflection</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNplUFtLwzAUDqLgnP4AQaGIr9Vzcpo0eZThDQYDnc8liwnb6JqZdGD_vS0b-uDT4fBd-Ri7RLhDpPL-HYAkFoXQmgQHoY7YCEGLvOQAx2w0wPmAn7KzlNbQ_4r0iF3Pmqxdumy-dCF2WfDZJGy2tfvO3kyXztmJN3VyF4c7Zh9Pj_PJSz6dPb9OHqa5JQ5tTsoWBEaTVtIgLJAWJUjhnQJLZV9LaKeMBiTtLefaeo9FT_lclCSFQBqzm73vNoavnUtttQ672PSRFeqCg5J93zHDPcnGkFJ0vtrG1cbErkKohhGqfyP0mtuDsUnW1D6axq7Sn1BL0OWQf7WnrVMb4i_MpSAuC_oBKSVgrg</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Chapman, S. J.</creator><creator>Lawry, J. M. H.</creator><creator>Ockendon, J. R.</creator><creator>Tew, R. H.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>U9A</scope></search><sort><creationdate>19990901</creationdate><title>On the Theory of Complex Rays</title><author>Chapman, S. J. ; Lawry, J. M. H. ; Ockendon, J. R. ; Tew, R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-38c430a93986a10b13b7065fe80c3761459e8a90139fc229cff14b70db7365513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Acoustics</topic><topic>Approximation</topic><topic>Caustic networks</topic><topic>Coordinate systems</topic><topic>Cylinders</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometrical optics</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Optics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Plane waves</topic><topic>Riemann surfaces</topic><topic>Sciences and techniques of general use</topic><topic>Sine function</topic><topic>Survey and Review</topic><topic>Tangents</topic><topic>Underwater sound</topic><topic>Wave diffraction</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, S. J.</creatorcontrib><creatorcontrib>Lawry, J. M. H.</creatorcontrib><creatorcontrib>Ockendon, J. R.</creatorcontrib><creatorcontrib>Tew, R. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, S. J.</au><au>Lawry, J. M. H.</au><au>Ockendon, J. R.</au><au>Tew, R. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Theory of Complex Rays</atitle><jtitle>SIAM review</jtitle><date>1999-09-01</date><risdate>1999</risdate><volume>41</volume><issue>3</issue><spage>417</spage><epage>509</epage><pages>417-509</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>The article surveys the application of complex-ray theory to the scalar Helmholtz equation in two dimensions. The first objective is to motivate a framework within which complex rays may be used to make predictions about wavefields in a wide variety of geometrical configurations. A crucial ingredient in this framework is the role played by Stokes' phenomenon in determining the regions of existence of complex rays. The identification of the Stokes surfaces emerges as a key step in the approximation procedure, and this leads to the consideration of the many characterizations of Stokes surfaces, including the adaptation and application of recent developments in exponential asymptotics to the complex Wentzel-Kramers-Brilbuin expansion of these wavefields. Examples are given for several cases of physical importance.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036144599352058</doi><tpages>93</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1999-09, Vol.41 (3), p.417-509
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_194208600
source JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects Acoustics
Approximation
Caustic networks
Coordinate systems
Cylinders
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Geometrical optics
Geometry
Mathematical analysis
Mathematics
Optics
Partial differential equations
Physics
Plane waves
Riemann surfaces
Sciences and techniques of general use
Sine function
Survey and Review
Tangents
Underwater sound
Wave diffraction
Wave reflection
title On the Theory of Complex Rays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Theory%20of%20Complex%20Rays&rft.jtitle=SIAM%20review&rft.au=Chapman,%20S.%20J.&rft.date=1999-09-01&rft.volume=41&rft.issue=3&rft.spage=417&rft.epage=509&rft.pages=417-509&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/S0036144599352058&rft_dat=%3Cjstor_proqu%3E2653264%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194208600&rft_id=info:pmid/&rft_jstor_id=2653264&rfr_iscdi=true