Finite Element Methods of Least-Squares Type

We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 1998-12, Vol.40 (4), p.789-837
Hauptverfasser: Bochev, Pavel B., Gunzburger, Max D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 837
container_issue 4
container_start_page 789
container_title SIAM review
container_volume 40
creator Bochev, Pavel B.
Gunzburger, Max D.
description We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.
doi_str_mv 10.1137/S0036144597321156
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194207835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2653032</jstor_id><sourcerecordid>2653032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</originalsourceid><addsrcrecordid>eNplkEFLw0AQhRdRsFZ_gOAhiEejMzvZ3eQopVWh4qH1HHaTDaa0Sbu7PfTfu6FFD56Gx3vfG3iM3SI8IZJ6XgCQxCwThSKOKOQZGyEUIlUc4JyNBjsd_Et25f0Kos6pGLHHWdu1wSbTtd3YLiQfNnz3tU_6Jplb7UO62O21sz5ZHrb2ml00eu3tzemO2ddsupy8pfPP1_fJyzytSOYhRVUorQHQ8Do3FlVtosplzWtES5UgDoWhRkGh6opQkJQ2EpkyRhoQNGb3x96t63d760O56veuiy9LLDIOKqchhMdQ5XrvnW3KrWs32h1KhHLYpPy3SWQeTsXaV3rdON1Vrf8D80xEJsbujrGVD737tbkUBMTpBz-BZzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194207835</pqid></control><display><type>article</type><title>Finite Element Methods of Least-Squares Type</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Bochev, Pavel B. ; Gunzburger, Max D.</creator><creatorcontrib>Bochev, Pavel B. ; Gunzburger, Max D.</creatorcontrib><description>We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/S0036144597321156</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Airy equation ; Approximation ; Boundary conditions ; Boundary value problems ; Curl ; Estimation methods ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Mathematics ; Navier Stokes equation ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Sciences and techniques of general use ; Theory</subject><ispartof>SIAM review, 1998-12, Vol.40 (4), p.789-837</ispartof><rights>Copyright 1998 Society for Industrial and Applied Mathematics</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics Dec 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</citedby><cites>FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2653032$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2653032$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1845003$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bochev, Pavel B.</creatorcontrib><creatorcontrib>Gunzburger, Max D.</creatorcontrib><title>Finite Element Methods of Least-Squares Type</title><title>SIAM review</title><description>We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.</description><subject>A priori knowledge</subject><subject>Airy equation</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Curl</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Mathematics</subject><subject>Navier Stokes equation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Theory</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkEFLw0AQhRdRsFZ_gOAhiEejMzvZ3eQopVWh4qH1HHaTDaa0Sbu7PfTfu6FFD56Gx3vfG3iM3SI8IZJ6XgCQxCwThSKOKOQZGyEUIlUc4JyNBjsd_Et25f0Kos6pGLHHWdu1wSbTtd3YLiQfNnz3tU_6Jplb7UO62O21sz5ZHrb2ml00eu3tzemO2ddsupy8pfPP1_fJyzytSOYhRVUorQHQ8Do3FlVtosplzWtES5UgDoWhRkGh6opQkJQ2EpkyRhoQNGb3x96t63d760O56veuiy9LLDIOKqchhMdQ5XrvnW3KrWs32h1KhHLYpPy3SWQeTsXaV3rdON1Vrf8D80xEJsbujrGVD737tbkUBMTpBz-BZzg</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Bochev, Pavel B.</creator><creator>Gunzburger, Max D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>U9A</scope></search><sort><creationdate>19981201</creationdate><title>Finite Element Methods of Least-Squares Type</title><author>Bochev, Pavel B. ; Gunzburger, Max D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>A priori knowledge</topic><topic>Airy equation</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Curl</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Mathematics</topic><topic>Navier Stokes equation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bochev, Pavel B.</creatorcontrib><creatorcontrib>Gunzburger, Max D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bochev, Pavel B.</au><au>Gunzburger, Max D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Methods of Least-Squares Type</atitle><jtitle>SIAM review</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>40</volume><issue>4</issue><spage>789</spage><epage>837</epage><pages>789-837</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036144597321156</doi><tpages>49</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1998-12, Vol.40 (4), p.789-837
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_194207835
source Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; Business Source Complete; JSTOR Mathematics & Statistics
subjects A priori knowledge
Airy equation
Approximation
Boundary conditions
Boundary value problems
Curl
Estimation methods
Exact sciences and technology
Finite element analysis
Finite element method
Mathematics
Navier Stokes equation
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Sciences and techniques of general use
Theory
title Finite Element Methods of Least-Squares Type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Methods%20of%20Least-Squares%20Type&rft.jtitle=SIAM%20review&rft.au=Bochev,%20Pavel%20B.&rft.date=1998-12-01&rft.volume=40&rft.issue=4&rft.spage=789&rft.epage=837&rft.pages=789-837&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/S0036144597321156&rft_dat=%3Cjstor_proqu%3E2653032%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194207835&rft_id=info:pmid/&rft_jstor_id=2653032&rfr_iscdi=true