Finite Element Methods of Least-Squares Type
We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity,...
Gespeichert in:
Veröffentlicht in: | SIAM review 1998-12, Vol.40 (4), p.789-837 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 837 |
---|---|
container_issue | 4 |
container_start_page | 789 |
container_title | SIAM review |
container_volume | 40 |
creator | Bochev, Pavel B. Gunzburger, Max D. |
description | We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance. |
doi_str_mv | 10.1137/S0036144597321156 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194207835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2653032</jstor_id><sourcerecordid>2653032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</originalsourceid><addsrcrecordid>eNplkEFLw0AQhRdRsFZ_gOAhiEejMzvZ3eQopVWh4qH1HHaTDaa0Sbu7PfTfu6FFD56Gx3vfG3iM3SI8IZJ6XgCQxCwThSKOKOQZGyEUIlUc4JyNBjsd_Et25f0Kos6pGLHHWdu1wSbTtd3YLiQfNnz3tU_6Jplb7UO62O21sz5ZHrb2ml00eu3tzemO2ddsupy8pfPP1_fJyzytSOYhRVUorQHQ8Do3FlVtosplzWtES5UgDoWhRkGh6opQkJQ2EpkyRhoQNGb3x96t63d760O56veuiy9LLDIOKqchhMdQ5XrvnW3KrWs32h1KhHLYpPy3SWQeTsXaV3rdON1Vrf8D80xEJsbujrGVD737tbkUBMTpBz-BZzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194207835</pqid></control><display><type>article</type><title>Finite Element Methods of Least-Squares Type</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Bochev, Pavel B. ; Gunzburger, Max D.</creator><creatorcontrib>Bochev, Pavel B. ; Gunzburger, Max D.</creatorcontrib><description>We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/S0036144597321156</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Airy equation ; Approximation ; Boundary conditions ; Boundary value problems ; Curl ; Estimation methods ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Mathematics ; Navier Stokes equation ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Sciences and techniques of general use ; Theory</subject><ispartof>SIAM review, 1998-12, Vol.40 (4), p.789-837</ispartof><rights>Copyright 1998 Society for Industrial and Applied Mathematics</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics Dec 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</citedby><cites>FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2653032$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2653032$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1845003$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bochev, Pavel B.</creatorcontrib><creatorcontrib>Gunzburger, Max D.</creatorcontrib><title>Finite Element Methods of Least-Squares Type</title><title>SIAM review</title><description>We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.</description><subject>A priori knowledge</subject><subject>Airy equation</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Curl</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Mathematics</subject><subject>Navier Stokes equation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Theory</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkEFLw0AQhRdRsFZ_gOAhiEejMzvZ3eQopVWh4qH1HHaTDaa0Sbu7PfTfu6FFD56Gx3vfG3iM3SI8IZJ6XgCQxCwThSKOKOQZGyEUIlUc4JyNBjsd_Et25f0Kos6pGLHHWdu1wSbTtd3YLiQfNnz3tU_6Jplb7UO62O21sz5ZHrb2ml00eu3tzemO2ddsupy8pfPP1_fJyzytSOYhRVUorQHQ8Do3FlVtosplzWtES5UgDoWhRkGh6opQkJQ2EpkyRhoQNGb3x96t63d760O56veuiy9LLDIOKqchhMdQ5XrvnW3KrWs32h1KhHLYpPy3SWQeTsXaV3rdON1Vrf8D80xEJsbujrGVD737tbkUBMTpBz-BZzg</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Bochev, Pavel B.</creator><creator>Gunzburger, Max D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>U9A</scope></search><sort><creationdate>19981201</creationdate><title>Finite Element Methods of Least-Squares Type</title><author>Bochev, Pavel B. ; Gunzburger, Max D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1797aa001b2d8be17dba0086d2d11e3c53209b3f7097dc315366e7aa47bb6b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>A priori knowledge</topic><topic>Airy equation</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Curl</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Mathematics</topic><topic>Navier Stokes equation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bochev, Pavel B.</creatorcontrib><creatorcontrib>Gunzburger, Max D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bochev, Pavel B.</au><au>Gunzburger, Max D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Methods of Least-Squares Type</atitle><jtitle>SIAM review</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>40</volume><issue>4</issue><spage>789</spage><epage>837</epage><pages>789-837</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous theoretical and computational advantages in the algorithmic design and implementation of corresponding finite element methods that are not present in standard Galerkin discretizations. Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic problems and allows us to circumvent stability conditions such as the inf-sup condition arising in mixed methods for the Stokes and Navier-Stokes equations. As a result, application of least-squares principles has led to the development of robust and efficient finite element methods for a large class of problems of practical importance.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036144597321156</doi><tpages>49</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 1998-12, Vol.40 (4), p.789-837 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_proquest_journals_194207835 |
source | Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; Business Source Complete; JSTOR Mathematics & Statistics |
subjects | A priori knowledge Airy equation Approximation Boundary conditions Boundary value problems Curl Estimation methods Exact sciences and technology Finite element analysis Finite element method Mathematics Navier Stokes equation Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, boundary value problems Sciences and techniques of general use Theory |
title | Finite Element Methods of Least-Squares Type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Methods%20of%20Least-Squares%20Type&rft.jtitle=SIAM%20review&rft.au=Bochev,%20Pavel%20B.&rft.date=1998-12-01&rft.volume=40&rft.issue=4&rft.spage=789&rft.epage=837&rft.pages=789-837&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/S0036144597321156&rft_dat=%3Cjstor_proqu%3E2653032%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194207835&rft_id=info:pmid/&rft_jstor_id=2653032&rfr_iscdi=true |