Statistical Regularization of Inverse Problems

In experimental sciences we often need to solve inverse problems. That is, we want to obtain information about the internal structure of a physical system from indirect noisy observations. Often the problem is not whether a solution exists; on the contrary, there are too many solutions that fit the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 2001, Vol.43 (2), p.347-366
1. Verfasser: Tenorio, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 2
container_start_page 347
container_title SIAM review
container_volume 43
creator Tenorio, Luis
description In experimental sciences we often need to solve inverse problems. That is, we want to obtain information about the internal structure of a physical system from indirect noisy observations. Often the problem is not whether a solution exists; on the contrary, there are too many solutions that fit the data to a chosen tolerance level. The goal is to use prior information to determine a physically meaningful solution. Here, we present some of the basic questions that arise. We describe methods that can be used to find inversion estimates as well as ways to assess their performance.
doi_str_mv 10.1137/s0036144500358232
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_194204555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3649759</jstor_id><sourcerecordid>3649759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-5d6a4be2354ae857d61e8d5c6aa5f6808ed43dd727c70c66a6539b775fb642033</originalsourceid><addsrcrecordid>eNpdkEFLxDAQhYMoWFd_gOChiNeuSZNJ2qMsri4sKK6eS5qm0tJt1kwr6K83ZRcRT4-Z980bZgi5ZHTOGFe3SCmXTAgIClnK0yMSMZpDolJKj0k02cnkn5IzxJaGOuN5ROabQQ8NDo3RXfxi38dO--Y7tFwfuzpe9Z_Wo42fvSs7u8VzclLrDu3FQWfkbXn_unhM1k8Pq8XdOjFC8iGBSmpR2pSD0DYDVUlmswqM1BpqmdHMVoJXlUqVUdRIqSXwvFQK6lKKlHI-I9f73J13H6PFoWjd6PuwsmB5IAQABIjtIeMdord1sfPNVvuvgtFi-kqx-f-VMHNzCNYYTq697k2DfwYh58ACdrXHWhyc_7W5FLkKxA-ZlWky</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194204555</pqid></control><display><type>article</type><title>Statistical Regularization of Inverse Problems</title><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Tenorio, Luis</creator><creatorcontrib>Tenorio, Luis</creatorcontrib><description>In experimental sciences we often need to solve inverse problems. That is, we want to obtain information about the internal structure of a physical system from indirect noisy observations. Often the problem is not whether a solution exists; on the contrary, there are too many solutions that fit the data to a chosen tolerance level. The goal is to use prior information to determine a physically meaningful solution. Here, we present some of the basic questions that arise. We describe methods that can be used to find inversion estimates as well as ways to assess their performance.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/s0036144500358232</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximations and expansions ; Confidence interval ; Cosmic microwave background radiation ; Data smoothing ; Education ; Estimation bias ; Estimators ; Exact sciences and technology ; Integral equations ; Inverse problems ; Linear inference, regression ; Mathematical analysis ; Mathematical functions ; Mathematical vectors ; Mathematics ; Minimax ; Nonparametric inference ; Probability and statistics ; Problem solving ; Sciences and techniques of general use ; Statistical variance ; Statistics</subject><ispartof>SIAM review, 2001, Vol.43 (2), p.347-366</ispartof><rights>Copyright 2001 Society for Industrial and Applied Mathematics</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics Jun 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-5d6a4be2354ae857d61e8d5c6aa5f6808ed43dd727c70c66a6539b775fb642033</citedby><cites>FETCH-LOGICAL-c463t-5d6a4be2354ae857d61e8d5c6aa5f6808ed43dd727c70c66a6539b775fb642033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3649759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3649759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3172,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1059351$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tenorio, Luis</creatorcontrib><title>Statistical Regularization of Inverse Problems</title><title>SIAM review</title><description>In experimental sciences we often need to solve inverse problems. That is, we want to obtain information about the internal structure of a physical system from indirect noisy observations. Often the problem is not whether a solution exists; on the contrary, there are too many solutions that fit the data to a chosen tolerance level. The goal is to use prior information to determine a physically meaningful solution. Here, we present some of the basic questions that arise. We describe methods that can be used to find inversion estimates as well as ways to assess their performance.</description><subject>Approximations and expansions</subject><subject>Confidence interval</subject><subject>Cosmic microwave background radiation</subject><subject>Data smoothing</subject><subject>Education</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Linear inference, regression</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Minimax</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Problem solving</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLxDAQhYMoWFd_gOChiNeuSZNJ2qMsri4sKK6eS5qm0tJt1kwr6K83ZRcRT4-Z980bZgi5ZHTOGFe3SCmXTAgIClnK0yMSMZpDolJKj0k02cnkn5IzxJaGOuN5ROabQQ8NDo3RXfxi38dO--Y7tFwfuzpe9Z_Wo42fvSs7u8VzclLrDu3FQWfkbXn_unhM1k8Pq8XdOjFC8iGBSmpR2pSD0DYDVUlmswqM1BpqmdHMVoJXlUqVUdRIqSXwvFQK6lKKlHI-I9f73J13H6PFoWjd6PuwsmB5IAQABIjtIeMdord1sfPNVvuvgtFi-kqx-f-VMHNzCNYYTq697k2DfwYh58ACdrXHWhyc_7W5FLkKxA-ZlWky</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Tenorio, Luis</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>U9A</scope></search><sort><creationdate>2001</creationdate><title>Statistical Regularization of Inverse Problems</title><author>Tenorio, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-5d6a4be2354ae857d61e8d5c6aa5f6808ed43dd727c70c66a6539b775fb642033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Approximations and expansions</topic><topic>Confidence interval</topic><topic>Cosmic microwave background radiation</topic><topic>Data smoothing</topic><topic>Education</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Linear inference, regression</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Minimax</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Problem solving</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenorio, Luis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenorio, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Regularization of Inverse Problems</atitle><jtitle>SIAM review</jtitle><date>2001</date><risdate>2001</risdate><volume>43</volume><issue>2</issue><spage>347</spage><epage>366</epage><pages>347-366</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>In experimental sciences we often need to solve inverse problems. That is, we want to obtain information about the internal structure of a physical system from indirect noisy observations. Often the problem is not whether a solution exists; on the contrary, there are too many solutions that fit the data to a chosen tolerance level. The goal is to use prior information to determine a physically meaningful solution. Here, we present some of the basic questions that arise. We describe methods that can be used to find inversion estimates as well as ways to assess their performance.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0036144500358232</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 2001, Vol.43 (2), p.347-366
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_194204555
source Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete
subjects Approximations and expansions
Confidence interval
Cosmic microwave background radiation
Data smoothing
Education
Estimation bias
Estimators
Exact sciences and technology
Integral equations
Inverse problems
Linear inference, regression
Mathematical analysis
Mathematical functions
Mathematical vectors
Mathematics
Minimax
Nonparametric inference
Probability and statistics
Problem solving
Sciences and techniques of general use
Statistical variance
Statistics
title Statistical Regularization of Inverse Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Regularization%20of%20Inverse%20Problems&rft.jtitle=SIAM%20review&rft.au=Tenorio,%20Luis&rft.date=2001&rft.volume=43&rft.issue=2&rft.spage=347&rft.epage=366&rft.pages=347-366&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/s0036144500358232&rft_dat=%3Cjstor_proqu%3E3649759%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194204555&rft_id=info:pmid/&rft_jstor_id=3649759&rfr_iscdi=true