Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space

Let Mn be a complete non-compact submanifold in the hyperbolic space Hn+m. We first give an estimate for the bottom of the spectral of the Laplace operator on Mn, under an integral pinching condition on the mean curvature. As a consequence of this estimation, we show some vanishing theorems for L2 h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2017-01, Vol.148, p.126-137
1. Verfasser: Lin, Hezi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue
container_start_page 126
container_title Nonlinear analysis
container_volume 148
creator Lin, Hezi
description Let Mn be a complete non-compact submanifold in the hyperbolic space Hn+m. We first give an estimate for the bottom of the spectral of the Laplace operator on Mn, under an integral pinching condition on the mean curvature. As a consequence of this estimation, we show some vanishing theorems for L2 harmonic forms in certain degrees if the total mean curvature of Mn is less than an explicit constant and its total curvature is less than a suitable related constant. In addition, we obtain some vanishing results under certain pointwise restrictions on the traceless second fundamental form. Moreover, according to the nonexistence of nontrivial L2 harmonic 1-forms, we can further prove some one-end theorems.
doi_str_mv 10.1016/j.na.2016.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1941700519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X16302243</els_id><sourcerecordid>1941700519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1b9343c410f914403a1eb4832f6889cb8755b6b380a2365727e61f8c7ae44a1d3</originalsourceid><addsrcrecordid>eNp1kMtLxDAQxoMouD7uHgOeWzPNo603WdYHrHhR8BbSdLqb0m1q0i7sf2-X9eppBub7Zr75EXIHLAUG6qFNe5Nmc5eyMmUgz8gCipwnMgN5ThaMqyyRQn1fkqsYW8YY5FwtyPvKbbDfm25CinF0OzMiNX1NN2ag4xZ9wF2kjQ80TtXO9K7xXR2p649Duj0MGCrfOUvjYCzekIvGdBFv_-o1-XpefS5fk_XHy9vyaZ1YnmVjAlXJBbcCWFOCEIwbwEoUPGtUUZS2KnIpK1XxgpmMK5lnOSpoCpsbFMJAza_J_WnvEPzPNOfWrZ9CP5_UUArIGZNQzip2UtngYwzY6CHMD4aDBqaP0HSre6OP0DQr9QxttjyeLDin3zsMOlqHvcXaBbSjrr373_wLmx1y0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941700519</pqid></control><display><type>article</type><title>Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space</title><source>Elsevier ScienceDirect Journals</source><creator>Lin, Hezi</creator><creatorcontrib>Lin, Hezi</creatorcontrib><description>Let Mn be a complete non-compact submanifold in the hyperbolic space Hn+m. We first give an estimate for the bottom of the spectral of the Laplace operator on Mn, under an integral pinching condition on the mean curvature. As a consequence of this estimation, we show some vanishing theorems for L2 harmonic forms in certain degrees if the total mean curvature of Mn is less than an explicit constant and its total curvature is less than a suitable related constant. In addition, we obtain some vanishing results under certain pointwise restrictions on the traceless second fundamental form. Moreover, according to the nonexistence of nontrivial L2 harmonic 1-forms, we can further prove some one-end theorems.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2016.09.015</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>[formula omitted]-harmonic [formula omitted]-forms ; Complete submanifolds ; Curvature ; Ends ; First eigenvalue ; Gap theorems ; Harmonic analysis ; Manifolds (mathematics) ; Operators (mathematics) ; Theorems ; Topological manifolds</subject><ispartof>Nonlinear analysis, 2017-01, Vol.148, p.126-137</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-1b9343c410f914403a1eb4832f6889cb8755b6b380a2365727e61f8c7ae44a1d3</citedby><cites>FETCH-LOGICAL-c322t-1b9343c410f914403a1eb4832f6889cb8755b6b380a2365727e61f8c7ae44a1d3</cites><orcidid>0000-0002-1072-2889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X16302243$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lin, Hezi</creatorcontrib><title>Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space</title><title>Nonlinear analysis</title><description>Let Mn be a complete non-compact submanifold in the hyperbolic space Hn+m. We first give an estimate for the bottom of the spectral of the Laplace operator on Mn, under an integral pinching condition on the mean curvature. As a consequence of this estimation, we show some vanishing theorems for L2 harmonic forms in certain degrees if the total mean curvature of Mn is less than an explicit constant and its total curvature is less than a suitable related constant. In addition, we obtain some vanishing results under certain pointwise restrictions on the traceless second fundamental form. Moreover, according to the nonexistence of nontrivial L2 harmonic 1-forms, we can further prove some one-end theorems.</description><subject>[formula omitted]-harmonic [formula omitted]-forms</subject><subject>Complete submanifolds</subject><subject>Curvature</subject><subject>Ends</subject><subject>First eigenvalue</subject><subject>Gap theorems</subject><subject>Harmonic analysis</subject><subject>Manifolds (mathematics)</subject><subject>Operators (mathematics)</subject><subject>Theorems</subject><subject>Topological manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLxDAQxoMouD7uHgOeWzPNo603WdYHrHhR8BbSdLqb0m1q0i7sf2-X9eppBub7Zr75EXIHLAUG6qFNe5Nmc5eyMmUgz8gCipwnMgN5ThaMqyyRQn1fkqsYW8YY5FwtyPvKbbDfm25CinF0OzMiNX1NN2ag4xZ9wF2kjQ80TtXO9K7xXR2p649Duj0MGCrfOUvjYCzekIvGdBFv_-o1-XpefS5fk_XHy9vyaZ1YnmVjAlXJBbcCWFOCEIwbwEoUPGtUUZS2KnIpK1XxgpmMK5lnOSpoCpsbFMJAza_J_WnvEPzPNOfWrZ9CP5_UUArIGZNQzip2UtngYwzY6CHMD4aDBqaP0HSre6OP0DQr9QxttjyeLDin3zsMOlqHvcXaBbSjrr373_wLmx1y0w</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Lin, Hezi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1072-2889</orcidid></search><sort><creationdate>201701</creationdate><title>Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space</title><author>Lin, Hezi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1b9343c410f914403a1eb4832f6889cb8755b6b380a2365727e61f8c7ae44a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>[formula omitted]-harmonic [formula omitted]-forms</topic><topic>Complete submanifolds</topic><topic>Curvature</topic><topic>Ends</topic><topic>First eigenvalue</topic><topic>Gap theorems</topic><topic>Harmonic analysis</topic><topic>Manifolds (mathematics)</topic><topic>Operators (mathematics)</topic><topic>Theorems</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Hezi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Hezi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space</atitle><jtitle>Nonlinear analysis</jtitle><date>2017-01</date><risdate>2017</risdate><volume>148</volume><spage>126</spage><epage>137</epage><pages>126-137</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>Let Mn be a complete non-compact submanifold in the hyperbolic space Hn+m. We first give an estimate for the bottom of the spectral of the Laplace operator on Mn, under an integral pinching condition on the mean curvature. As a consequence of this estimation, we show some vanishing theorems for L2 harmonic forms in certain degrees if the total mean curvature of Mn is less than an explicit constant and its total curvature is less than a suitable related constant. In addition, we obtain some vanishing results under certain pointwise restrictions on the traceless second fundamental form. Moreover, according to the nonexistence of nontrivial L2 harmonic 1-forms, we can further prove some one-end theorems.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2016.09.015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1072-2889</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2017-01, Vol.148, p.126-137
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_1941700519
source Elsevier ScienceDirect Journals
subjects [formula omitted]-harmonic [formula omitted]-forms
Complete submanifolds
Curvature
Ends
First eigenvalue
Gap theorems
Harmonic analysis
Manifolds (mathematics)
Operators (mathematics)
Theorems
Topological manifolds
title Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20estimate%20and%20gap%20theorems%20for%20submanifolds%20in%20the%20hyperbolic%20space&rft.jtitle=Nonlinear%20analysis&rft.au=Lin,%20Hezi&rft.date=2017-01&rft.volume=148&rft.spage=126&rft.epage=137&rft.pages=126-137&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2016.09.015&rft_dat=%3Cproquest_cross%3E1941700519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941700519&rft_id=info:pmid/&rft_els_id=S0362546X16302243&rfr_iscdi=true