Theoretical assessment of particle generation from sodium pool fires

•Development of particle generation model for sodium-oxides aerosol formation.•Development of partially validated numerical simulations to build up maps of saturation ratio.•Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools.•Prediction of high concentrations of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2016-12, Vol.310, p.470-483
Hauptverfasser: Garcia, M., Herranz, L.E., Kissane, M.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue
container_start_page 470
container_title Nuclear engineering and design
container_volume 310
creator Garcia, M.
Herranz, L.E.
Kissane, M.P.
description •Development of particle generation model for sodium-oxides aerosol formation.•Development of partially validated numerical simulations to build up maps of saturation ratio.•Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools.•Prediction of high concentrations of primary particles in the combustion zone. Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.
doi_str_mv 10.1016/j.nucengdes.2016.10.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1941699180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549316303995</els_id><sourcerecordid>1941699180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-88feedaae50d3d284aa7e2bba42b3b7f4269fbf7bb8728397d7a4610dc5ad1b23</originalsourceid><addsrcrecordid>eNqFUNtKxDAQDaLgevkGAz63Jml6yeOyXmHBlxV8C7lM1pa2WZNW8O9NWfHVeRk4c87MnIPQDSU5JbS66_JxNjDuLcScJSChOWH8BK1oU7OsLsX7KVoRwkRWclGco4sYO7KUYCt0v_sAH2BqjeqxihFiHGCcsHf4oEKCe8B7GCGoqfUjdsEPOHrbzgM-eN9j1waIV-jMqT7C9W-_RG-PD7vNc7Z9fXrZrLeZ4YROWdM4AKsUlMQWljVcqRqY1oozXejacVYJp12tdXq8KURta8UrSqwplaWaFZfo9rj3EPznDHGSnZ_DmE5KKjithKANSaz6yDLBxxjAyUNoBxW-JSVyiUx28i8yuUS2DFJkSbk-KiGZ-GohyGhaGA3Y5NJM0vr23x0_QOp6ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941699180</pqid></control><display><type>article</type><title>Theoretical assessment of particle generation from sodium pool fires</title><source>Access via ScienceDirect (Elsevier)</source><creator>Garcia, M. ; Herranz, L.E. ; Kissane, M.P.</creator><creatorcontrib>Garcia, M. ; Herranz, L.E. ; Kissane, M.P.</creatorcontrib><description>•Development of particle generation model for sodium-oxides aerosol formation.•Development of partially validated numerical simulations to build up maps of saturation ratio.•Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools.•Prediction of high concentrations of primary particles in the combustion zone. Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2016.10.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical reactions ; Circulation ; Concentration gradient ; Condensation ; Containment ; Fires ; In-containment SFRs ; Modelling ; Nuclear accidents &amp; safety ; Nuclear reactors ; Nucleation ; Numerical simulation ; Oxidation ; Oxides ; Oxygen ; Particle generation rate ; Pool fires ; Primary particle size ; Sodium ; Sodium cooled reactors ; Sodium pool fire ; Three dimensional models ; Vaporization ; Vapors</subject><ispartof>Nuclear engineering and design, 2016-12, Vol.310, p.470-483</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-88feedaae50d3d284aa7e2bba42b3b7f4269fbf7bb8728397d7a4610dc5ad1b23</citedby><cites>FETCH-LOGICAL-c401t-88feedaae50d3d284aa7e2bba42b3b7f4269fbf7bb8728397d7a4610dc5ad1b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2016.10.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Garcia, M.</creatorcontrib><creatorcontrib>Herranz, L.E.</creatorcontrib><creatorcontrib>Kissane, M.P.</creatorcontrib><title>Theoretical assessment of particle generation from sodium pool fires</title><title>Nuclear engineering and design</title><description>•Development of particle generation model for sodium-oxides aerosol formation.•Development of partially validated numerical simulations to build up maps of saturation ratio.•Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools.•Prediction of high concentrations of primary particles in the combustion zone. Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.</description><subject>Chemical reactions</subject><subject>Circulation</subject><subject>Concentration gradient</subject><subject>Condensation</subject><subject>Containment</subject><subject>Fires</subject><subject>In-containment SFRs</subject><subject>Modelling</subject><subject>Nuclear accidents &amp; safety</subject><subject>Nuclear reactors</subject><subject>Nucleation</subject><subject>Numerical simulation</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Particle generation rate</subject><subject>Pool fires</subject><subject>Primary particle size</subject><subject>Sodium</subject><subject>Sodium cooled reactors</subject><subject>Sodium pool fire</subject><subject>Three dimensional models</subject><subject>Vaporization</subject><subject>Vapors</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUNtKxDAQDaLgevkGAz63Jml6yeOyXmHBlxV8C7lM1pa2WZNW8O9NWfHVeRk4c87MnIPQDSU5JbS66_JxNjDuLcScJSChOWH8BK1oU7OsLsX7KVoRwkRWclGco4sYO7KUYCt0v_sAH2BqjeqxihFiHGCcsHf4oEKCe8B7GCGoqfUjdsEPOHrbzgM-eN9j1waIV-jMqT7C9W-_RG-PD7vNc7Z9fXrZrLeZ4YROWdM4AKsUlMQWljVcqRqY1oozXejacVYJp12tdXq8KURta8UrSqwplaWaFZfo9rj3EPznDHGSnZ_DmE5KKjithKANSaz6yDLBxxjAyUNoBxW-JSVyiUx28i8yuUS2DFJkSbk-KiGZ-GohyGhaGA3Y5NJM0vr23x0_QOp6ug</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Garcia, M.</creator><creator>Herranz, L.E.</creator><creator>Kissane, M.P.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20161215</creationdate><title>Theoretical assessment of particle generation from sodium pool fires</title><author>Garcia, M. ; Herranz, L.E. ; Kissane, M.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-88feedaae50d3d284aa7e2bba42b3b7f4269fbf7bb8728397d7a4610dc5ad1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical reactions</topic><topic>Circulation</topic><topic>Concentration gradient</topic><topic>Condensation</topic><topic>Containment</topic><topic>Fires</topic><topic>In-containment SFRs</topic><topic>Modelling</topic><topic>Nuclear accidents &amp; safety</topic><topic>Nuclear reactors</topic><topic>Nucleation</topic><topic>Numerical simulation</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Particle generation rate</topic><topic>Pool fires</topic><topic>Primary particle size</topic><topic>Sodium</topic><topic>Sodium cooled reactors</topic><topic>Sodium pool fire</topic><topic>Three dimensional models</topic><topic>Vaporization</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, M.</creatorcontrib><creatorcontrib>Herranz, L.E.</creatorcontrib><creatorcontrib>Kissane, M.P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, M.</au><au>Herranz, L.E.</au><au>Kissane, M.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical assessment of particle generation from sodium pool fires</atitle><jtitle>Nuclear engineering and design</jtitle><date>2016-12-15</date><risdate>2016</risdate><volume>310</volume><spage>470</spage><epage>483</epage><pages>470-483</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•Development of particle generation model for sodium-oxides aerosol formation.•Development of partially validated numerical simulations to build up maps of saturation ratio.•Nucleation of supersaturated vapours as relevant source of aerosols over sodium pools.•Prediction of high concentrations of primary particles in the combustion zone. Potential sodium discharge in the containment during postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs) would have major consequences for accident development in terms of energetics and source term. In the containment, sodium vaporization and subsequent oxidation would result in supersaturated oxide vapours that would undergo rapid nucleation creating toxic aerosols. Therefore, modelling this vapour nucleation is essential to proper source term assessment in SFRs. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during an in-containment sodium pool fire has been developed. Based on a suite of individual models for sodium vaporization, oxygen natural circulation (3D modelling), sodium-oxygen chemical reactions, sodium-oxides-vapour nucleation and condensation, its consistency has been partially validated by comparing with available experimental data. As an outcome, large temperature and vapour concentration gradients set over the sodium pool have been found which result in large particle concentrations in the close vicinity of the pool.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2016.10.024</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2016-12, Vol.310, p.470-483
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_journals_1941699180
source Access via ScienceDirect (Elsevier)
subjects Chemical reactions
Circulation
Concentration gradient
Condensation
Containment
Fires
In-containment SFRs
Modelling
Nuclear accidents & safety
Nuclear reactors
Nucleation
Numerical simulation
Oxidation
Oxides
Oxygen
Particle generation rate
Pool fires
Primary particle size
Sodium
Sodium cooled reactors
Sodium pool fire
Three dimensional models
Vaporization
Vapors
title Theoretical assessment of particle generation from sodium pool fires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20assessment%20of%20particle%20generation%20from%20sodium%20pool%20fires&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Garcia,%20M.&rft.date=2016-12-15&rft.volume=310&rft.spage=470&rft.epage=483&rft.pages=470-483&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2016.10.024&rft_dat=%3Cproquest_cross%3E1941699180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941699180&rft_id=info:pmid/&rft_els_id=S0029549316303995&rfr_iscdi=true