Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters

Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-09, Vol.27 (36), p.n/a
Hauptverfasser: Yang, Meijia, Hu, Xuanhe, Fang, Zhengsong, Sun, Lu, Yuan, Zhongke, Wang, Shuangyin, Hong, Wei, Chen, Xudong, Yu, Dingshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced functional materials
container_volume 27
creator Yang, Meijia
Hu, Xuanhe
Fang, Zhengsong
Sun, Lu
Yuan, Zhongke
Wang, Shuangyin
Hong, Wei
Chen, Xudong
Yu, Dingshan
description Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances. A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries.
doi_str_mv 10.1002/adfm.201701971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1941306526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1941306526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhosoOKdXzwHPm_maNm29dZtzwqaCCuKlpGmyRWYzk0ztbT9BEPyB-yVGJ3r0lC_wvM_hCYJDwF3AODxmlXzshhgSDFkCW0ELKNAOwWG6_XvD3W6wZ-0D9lhColbw0VNyWXOndM3maHI5XK_eBsKoZ1GhPjOlrtHVTDtdK476prHOU7nhM-UEd0sjLJLaoLx6ZjX3k_t6vXrPlUGsrtBY-c816jHnvFHYEzRS09m8QaevC209fWbYwpu8-kI5o6eiRpNv2O4HO5LNrTj4edvB7fD0pj_qjC_Pzvv5uMNJTKGTppCVIZaxoJgnJeHASyxCFlGZUCgrHgGmkUhpFoUZzogkcRkKkmCGZQSJJO3gaONdGP20FNYVD3ppfApbQBYBwTQOqae6G4obba0RslgY9chMUwAuvtoXX-2L3_Z-kG0GL2oumn_oIh8MJ3_bTzLujBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941306526</pqid></control><display><type>article</type><title>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</title><source>Access via Wiley Online Library</source><creator>Yang, Meijia ; Hu, Xuanhe ; Fang, Zhengsong ; Sun, Lu ; Yuan, Zhongke ; Wang, Shuangyin ; Hong, Wei ; Chen, Xudong ; Yu, Dingshan</creator><creatorcontrib>Yang, Meijia ; Hu, Xuanhe ; Fang, Zhengsong ; Sun, Lu ; Yuan, Zhongke ; Wang, Shuangyin ; Hong, Wei ; Chen, Xudong ; Yu, Dingshan</creatorcontrib><description>Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances. A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201701971</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Decay rate ; Electrochemical analysis ; Exposure ; graphitic nitrogen ; Lithium sulfur batteries ; Li–S batteries ; Materials science ; Metal air batteries ; Metal-organic frameworks ; Microporosity ; Nitrogen ; Photonic crystals ; Silicon dioxide ; Texturing ; Zinc-oxygen batteries ; Zn–air batteries</subject><ispartof>Advanced functional materials, 2017-09, Vol.27 (36), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</citedby><cites>FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201701971$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201701971$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Meijia</creatorcontrib><creatorcontrib>Hu, Xuanhe</creatorcontrib><creatorcontrib>Fang, Zhengsong</creatorcontrib><creatorcontrib>Sun, Lu</creatorcontrib><creatorcontrib>Yuan, Zhongke</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Hong, Wei</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><creatorcontrib>Yu, Dingshan</creatorcontrib><title>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</title><title>Advanced functional materials</title><description>Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances. A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries.</description><subject>Decay rate</subject><subject>Electrochemical analysis</subject><subject>Exposure</subject><subject>graphitic nitrogen</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Metal-organic frameworks</subject><subject>Microporosity</subject><subject>Nitrogen</subject><subject>Photonic crystals</subject><subject>Silicon dioxide</subject><subject>Texturing</subject><subject>Zinc-oxygen batteries</subject><subject>Zn–air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAYhosoOKdXzwHPm_maNm29dZtzwqaCCuKlpGmyRWYzk0ztbT9BEPyB-yVGJ3r0lC_wvM_hCYJDwF3AODxmlXzshhgSDFkCW0ELKNAOwWG6_XvD3W6wZ-0D9lhColbw0VNyWXOndM3maHI5XK_eBsKoZ1GhPjOlrtHVTDtdK476prHOU7nhM-UEd0sjLJLaoLx6ZjX3k_t6vXrPlUGsrtBY-c816jHnvFHYEzRS09m8QaevC209fWbYwpu8-kI5o6eiRpNv2O4HO5LNrTj4edvB7fD0pj_qjC_Pzvv5uMNJTKGTppCVIZaxoJgnJeHASyxCFlGZUCgrHgGmkUhpFoUZzogkcRkKkmCGZQSJJO3gaONdGP20FNYVD3ppfApbQBYBwTQOqae6G4obba0RslgY9chMUwAuvtoXX-2L3_Z-kG0GL2oumn_oIh8MJ3_bTzLujBM</recordid><startdate>20170926</startdate><enddate>20170926</enddate><creator>Yang, Meijia</creator><creator>Hu, Xuanhe</creator><creator>Fang, Zhengsong</creator><creator>Sun, Lu</creator><creator>Yuan, Zhongke</creator><creator>Wang, Shuangyin</creator><creator>Hong, Wei</creator><creator>Chen, Xudong</creator><creator>Yu, Dingshan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170926</creationdate><title>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</title><author>Yang, Meijia ; Hu, Xuanhe ; Fang, Zhengsong ; Sun, Lu ; Yuan, Zhongke ; Wang, Shuangyin ; Hong, Wei ; Chen, Xudong ; Yu, Dingshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Decay rate</topic><topic>Electrochemical analysis</topic><topic>Exposure</topic><topic>graphitic nitrogen</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Metal-organic frameworks</topic><topic>Microporosity</topic><topic>Nitrogen</topic><topic>Photonic crystals</topic><topic>Silicon dioxide</topic><topic>Texturing</topic><topic>Zinc-oxygen batteries</topic><topic>Zn–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Meijia</creatorcontrib><creatorcontrib>Hu, Xuanhe</creatorcontrib><creatorcontrib>Fang, Zhengsong</creatorcontrib><creatorcontrib>Sun, Lu</creatorcontrib><creatorcontrib>Yuan, Zhongke</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Hong, Wei</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><creatorcontrib>Yu, Dingshan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Meijia</au><au>Hu, Xuanhe</au><au>Fang, Zhengsong</au><au>Sun, Lu</au><au>Yuan, Zhongke</au><au>Wang, Shuangyin</au><au>Hong, Wei</au><au>Chen, Xudong</au><au>Yu, Dingshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</atitle><jtitle>Advanced functional materials</jtitle><date>2017-09-26</date><risdate>2017</risdate><volume>27</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances. A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201701971</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-09, Vol.27 (36), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_1941306526
source Access via Wiley Online Library
subjects Decay rate
Electrochemical analysis
Exposure
graphitic nitrogen
Lithium sulfur batteries
Li–S batteries
Materials science
Metal air batteries
Metal-organic frameworks
Microporosity
Nitrogen
Photonic crystals
Silicon dioxide
Texturing
Zinc-oxygen batteries
Zn–air batteries
title Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20MOF%E2%80%90Derived%20Carbon%20Photonic%20Crystal%20Architectures%20for%20Advanced%20Zn%E2%80%93Air%20and%20Li%E2%80%93S%20Batteries:%20Highly%20Exposed%20Graphitic%20Nitrogen%20Matters&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Meijia&rft.date=2017-09-26&rft.volume=27&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201701971&rft_dat=%3Cproquest_cross%3E1941306526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941306526&rft_id=info:pmid/&rfr_iscdi=true