Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters
Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templ...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-09, Vol.27 (36), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Yang, Meijia Hu, Xuanhe Fang, Zhengsong Sun, Lu Yuan, Zhongke Wang, Shuangyin Hong, Wei Chen, Xudong Yu, Dingshan |
description | Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances.
A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries. |
doi_str_mv | 10.1002/adfm.201701971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1941306526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1941306526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhosoOKdXzwHPm_maNm29dZtzwqaCCuKlpGmyRWYzk0ztbT9BEPyB-yVGJ3r0lC_wvM_hCYJDwF3AODxmlXzshhgSDFkCW0ELKNAOwWG6_XvD3W6wZ-0D9lhColbw0VNyWXOndM3maHI5XK_eBsKoZ1GhPjOlrtHVTDtdK476prHOU7nhM-UEd0sjLJLaoLx6ZjX3k_t6vXrPlUGsrtBY-c816jHnvFHYEzRS09m8QaevC209fWbYwpu8-kI5o6eiRpNv2O4HO5LNrTj4edvB7fD0pj_qjC_Pzvv5uMNJTKGTppCVIZaxoJgnJeHASyxCFlGZUCgrHgGmkUhpFoUZzogkcRkKkmCGZQSJJO3gaONdGP20FNYVD3ppfApbQBYBwTQOqae6G4obba0RslgY9chMUwAuvtoXX-2L3_Z-kG0GL2oumn_oIh8MJ3_bTzLujBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941306526</pqid></control><display><type>article</type><title>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</title><source>Access via Wiley Online Library</source><creator>Yang, Meijia ; Hu, Xuanhe ; Fang, Zhengsong ; Sun, Lu ; Yuan, Zhongke ; Wang, Shuangyin ; Hong, Wei ; Chen, Xudong ; Yu, Dingshan</creator><creatorcontrib>Yang, Meijia ; Hu, Xuanhe ; Fang, Zhengsong ; Sun, Lu ; Yuan, Zhongke ; Wang, Shuangyin ; Hong, Wei ; Chen, Xudong ; Yu, Dingshan</creatorcontrib><description>Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances.
A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201701971</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Decay rate ; Electrochemical analysis ; Exposure ; graphitic nitrogen ; Lithium sulfur batteries ; Li–S batteries ; Materials science ; Metal air batteries ; Metal-organic frameworks ; Microporosity ; Nitrogen ; Photonic crystals ; Silicon dioxide ; Texturing ; Zinc-oxygen batteries ; Zn–air batteries</subject><ispartof>Advanced functional materials, 2017-09, Vol.27 (36), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</citedby><cites>FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201701971$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201701971$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Meijia</creatorcontrib><creatorcontrib>Hu, Xuanhe</creatorcontrib><creatorcontrib>Fang, Zhengsong</creatorcontrib><creatorcontrib>Sun, Lu</creatorcontrib><creatorcontrib>Yuan, Zhongke</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Hong, Wei</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><creatorcontrib>Yu, Dingshan</creatorcontrib><title>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</title><title>Advanced functional materials</title><description>Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances.
A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries.</description><subject>Decay rate</subject><subject>Electrochemical analysis</subject><subject>Exposure</subject><subject>graphitic nitrogen</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Metal-organic frameworks</subject><subject>Microporosity</subject><subject>Nitrogen</subject><subject>Photonic crystals</subject><subject>Silicon dioxide</subject><subject>Texturing</subject><subject>Zinc-oxygen batteries</subject><subject>Zn–air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAYhosoOKdXzwHPm_maNm29dZtzwqaCCuKlpGmyRWYzk0ztbT9BEPyB-yVGJ3r0lC_wvM_hCYJDwF3AODxmlXzshhgSDFkCW0ELKNAOwWG6_XvD3W6wZ-0D9lhColbw0VNyWXOndM3maHI5XK_eBsKoZ1GhPjOlrtHVTDtdK476prHOU7nhM-UEd0sjLJLaoLx6ZjX3k_t6vXrPlUGsrtBY-c816jHnvFHYEzRS09m8QaevC209fWbYwpu8-kI5o6eiRpNv2O4HO5LNrTj4edvB7fD0pj_qjC_Pzvv5uMNJTKGTppCVIZaxoJgnJeHASyxCFlGZUCgrHgGmkUhpFoUZzogkcRkKkmCGZQSJJO3gaONdGP20FNYVD3ppfApbQBYBwTQOqae6G4obba0RslgY9chMUwAuvtoXX-2L3_Z-kG0GL2oumn_oIh8MJ3_bTzLujBM</recordid><startdate>20170926</startdate><enddate>20170926</enddate><creator>Yang, Meijia</creator><creator>Hu, Xuanhe</creator><creator>Fang, Zhengsong</creator><creator>Sun, Lu</creator><creator>Yuan, Zhongke</creator><creator>Wang, Shuangyin</creator><creator>Hong, Wei</creator><creator>Chen, Xudong</creator><creator>Yu, Dingshan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170926</creationdate><title>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</title><author>Yang, Meijia ; Hu, Xuanhe ; Fang, Zhengsong ; Sun, Lu ; Yuan, Zhongke ; Wang, Shuangyin ; Hong, Wei ; Chen, Xudong ; Yu, Dingshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-8819b20f5e60c7b3c1cb0e2a46f761bdc41064e869429093f35b2e370a0f417f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Decay rate</topic><topic>Electrochemical analysis</topic><topic>Exposure</topic><topic>graphitic nitrogen</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Metal-organic frameworks</topic><topic>Microporosity</topic><topic>Nitrogen</topic><topic>Photonic crystals</topic><topic>Silicon dioxide</topic><topic>Texturing</topic><topic>Zinc-oxygen batteries</topic><topic>Zn–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Meijia</creatorcontrib><creatorcontrib>Hu, Xuanhe</creatorcontrib><creatorcontrib>Fang, Zhengsong</creatorcontrib><creatorcontrib>Sun, Lu</creatorcontrib><creatorcontrib>Yuan, Zhongke</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Hong, Wei</creatorcontrib><creatorcontrib>Chen, Xudong</creatorcontrib><creatorcontrib>Yu, Dingshan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Meijia</au><au>Hu, Xuanhe</au><au>Fang, Zhengsong</au><au>Sun, Lu</au><au>Yuan, Zhongke</au><au>Wang, Shuangyin</au><au>Hong, Wei</au><au>Chen, Xudong</au><au>Yu, Dingshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters</atitle><jtitle>Advanced functional materials</jtitle><date>2017-09-26</date><risdate>2017</risdate><volume>27</volume><issue>36</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nitrogen‐rich porous carbons (NPCs) are the leading cathode materials for next‐generation Zn–air and Li–S batteries. However, most existing NPC suffers from insufficient exposure and harnessing of nitrogen‐dopants (NDs), constraining the electrochemical performance. Herein, by combining silica templating with in situ texturing of metal–organic frameworks, a new bifunctional 3D nitrogen‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), ultralarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is designed, enabling sufficient exposure and accessibility of NDs. Thus, when used as cathode catalysts, the Zn–air battery delivers a fantastic capacity of 770 mAh gZn−1 at an unprecedentedly high rate of 120 mA cm−2, with an ultrahigh power density of 197 mW cm−2. When hosting 78 wt% sulfur, the Li–S battery affords a high‐rate capacity of 967 mAh g−1 at 2 C, with superb stability over 1000 cycles at 0.5 C (0.054% decay rate per cycle), comparable to the best literature value. The results prove the dominant role of highly exposed graphitic‐N in boosting both cathode performances.
A new metal–organic‐framework‐derived N‐rich carbon photonic crystal architecture of simultaneously record‐high total pore volume (13.42 cm3 g−1), superlarge surface area (2546 m2 g−1), and permeable hierarchical macro‐meso‐microporosity is explored as bifunctional cathode materials for next‐generation Zn–air and Li–S batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201701971</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-09, Vol.27 (36), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_1941306526 |
source | Access via Wiley Online Library |
subjects | Decay rate Electrochemical analysis Exposure graphitic nitrogen Lithium sulfur batteries Li–S batteries Materials science Metal air batteries Metal-organic frameworks Microporosity Nitrogen Photonic crystals Silicon dioxide Texturing Zinc-oxygen batteries Zn–air batteries |
title | Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20MOF%E2%80%90Derived%20Carbon%20Photonic%20Crystal%20Architectures%20for%20Advanced%20Zn%E2%80%93Air%20and%20Li%E2%80%93S%20Batteries:%20Highly%20Exposed%20Graphitic%20Nitrogen%20Matters&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Meijia&rft.date=2017-09-26&rft.volume=27&rft.issue=36&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201701971&rft_dat=%3Cproquest_cross%3E1941306526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941306526&rft_id=info:pmid/&rfr_iscdi=true |