Distributed output‐feedback fault detection and isolation of cascade process networks

Distributed output‐feedback fault detection and isolation (FDI) of nonlinear cascade process networks that can be divided into subsystems is considered. Based on the assumption that an exponentially convergent estimator exists for each subsystem, a distributed state estimation system is developed. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2017-10, Vol.63 (10), p.4329-4342
Hauptverfasser: Yin, Xunyuan, Liu, Jinfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4342
container_issue 10
container_start_page 4329
container_title AIChE journal
container_volume 63
creator Yin, Xunyuan
Liu, Jinfeng
description Distributed output‐feedback fault detection and isolation (FDI) of nonlinear cascade process networks that can be divided into subsystems is considered. Based on the assumption that an exponentially convergent estimator exists for each subsystem, a distributed state estimation system is developed. In the distributed state estimation system, a compensator is designed for each subsystem to compensate for subsystem interaction and the estimators for subsystems communicate to exchange information. It is shown that when there is no fault, the estimation error of the distributed estimation system converges to zero in the absence of system disturbances and measurement noise. For each subsystem, a state predictor is also designed to provide subsystem state predictions. A residual generator is designed for each subsystem based on subsystem state estimates given by the distributed state estimation system and subsystem state predictions given by the predictor. A subsystem residual generator generates two residual sequences, which act as references for FDI. A distributed FDI mechanism is proposed based on residuals. The proposed approach is able to handle both actuator faults and sensor faults by evaluating the residual signals. A chemical process example is introduced to demonstrate the effectiveness of the distributed FDI mechanism. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4329–4342, 2017
doi_str_mv 10.1002/aic.15791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1940993886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940993886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4001-4c0f1f5f2c565afa95e6409fdf96943b9d365b48a2cc3feb3f7edd126a0615883</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaydxEi-r8lepEhsQS8uxx5LbEBfbUcWOI3BGToLbsGU1eqNv3jw9hK4pmVFC8rm0akZZzekJmlBW1hnjhJ2iCSGEZmlBz9FFCJuk8rrJJ-jtzobobTtE0NgNcTfEn69vA6BbqbbYyKGLWEMEFa3rsew1tsF18qicwUoGJTXgnXcKQsA9xL3z23CJzozsAlz9zSl6fbh_WT5l6-fH1XKxzlR5SFQqYqhhJlesYtJIzqAqCTfa8IqXRct1UbG2bGSuVGGgLUwNWtO8kqSirGmKKboZfVOAjwFCFBs3-D69FJQnJ140TZWo25FS3oXgwYidt-_SfwpKxKE3kXoTx94SOx_Zve3g839QLFbL8eIXCCRw6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940993886</pqid></control><display><type>article</type><title>Distributed output‐feedback fault detection and isolation of cascade process networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yin, Xunyuan ; Liu, Jinfeng</creator><creatorcontrib>Yin, Xunyuan ; Liu, Jinfeng</creatorcontrib><description>Distributed output‐feedback fault detection and isolation (FDI) of nonlinear cascade process networks that can be divided into subsystems is considered. Based on the assumption that an exponentially convergent estimator exists for each subsystem, a distributed state estimation system is developed. In the distributed state estimation system, a compensator is designed for each subsystem to compensate for subsystem interaction and the estimators for subsystems communicate to exchange information. It is shown that when there is no fault, the estimation error of the distributed estimation system converges to zero in the absence of system disturbances and measurement noise. For each subsystem, a state predictor is also designed to provide subsystem state predictions. A residual generator is designed for each subsystem based on subsystem state estimates given by the distributed state estimation system and subsystem state predictions given by the predictor. A subsystem residual generator generates two residual sequences, which act as references for FDI. A distributed FDI mechanism is proposed based on residuals. The proposed approach is able to handle both actuator faults and sensor faults by evaluating the residual signals. A chemical process example is introduced to demonstrate the effectiveness of the distributed FDI mechanism. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4329–4342, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15791</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>actuator faults ; chemical processes ; Convergence ; Fault detection ; Faults ; Feedback ; Noise measurement ; nonlinear systems ; Output feedback ; sensor faults ; State estimation</subject><ispartof>AIChE journal, 2017-10, Vol.63 (10), p.4329-4342</ispartof><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4001-4c0f1f5f2c565afa95e6409fdf96943b9d365b48a2cc3feb3f7edd126a0615883</citedby><cites>FETCH-LOGICAL-c4001-4c0f1f5f2c565afa95e6409fdf96943b9d365b48a2cc3feb3f7edd126a0615883</cites><orcidid>0000-0001-8873-847X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.15791$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.15791$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yin, Xunyuan</creatorcontrib><creatorcontrib>Liu, Jinfeng</creatorcontrib><title>Distributed output‐feedback fault detection and isolation of cascade process networks</title><title>AIChE journal</title><description>Distributed output‐feedback fault detection and isolation (FDI) of nonlinear cascade process networks that can be divided into subsystems is considered. Based on the assumption that an exponentially convergent estimator exists for each subsystem, a distributed state estimation system is developed. In the distributed state estimation system, a compensator is designed for each subsystem to compensate for subsystem interaction and the estimators for subsystems communicate to exchange information. It is shown that when there is no fault, the estimation error of the distributed estimation system converges to zero in the absence of system disturbances and measurement noise. For each subsystem, a state predictor is also designed to provide subsystem state predictions. A residual generator is designed for each subsystem based on subsystem state estimates given by the distributed state estimation system and subsystem state predictions given by the predictor. A subsystem residual generator generates two residual sequences, which act as references for FDI. A distributed FDI mechanism is proposed based on residuals. The proposed approach is able to handle both actuator faults and sensor faults by evaluating the residual signals. A chemical process example is introduced to demonstrate the effectiveness of the distributed FDI mechanism. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4329–4342, 2017</description><subject>actuator faults</subject><subject>chemical processes</subject><subject>Convergence</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Feedback</subject><subject>Noise measurement</subject><subject>nonlinear systems</subject><subject>Output feedback</subject><subject>sensor faults</subject><subject>State estimation</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIaydxEi-r8lepEhsQS8uxx5LbEBfbUcWOI3BGToLbsGU1eqNv3jw9hK4pmVFC8rm0akZZzekJmlBW1hnjhJ2iCSGEZmlBz9FFCJuk8rrJJ-jtzobobTtE0NgNcTfEn69vA6BbqbbYyKGLWEMEFa3rsew1tsF18qicwUoGJTXgnXcKQsA9xL3z23CJzozsAlz9zSl6fbh_WT5l6-fH1XKxzlR5SFQqYqhhJlesYtJIzqAqCTfa8IqXRct1UbG2bGSuVGGgLUwNWtO8kqSirGmKKboZfVOAjwFCFBs3-D69FJQnJ140TZWo25FS3oXgwYidt-_SfwpKxKE3kXoTx94SOx_Zve3g839QLFbL8eIXCCRw6Q</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Yin, Xunyuan</creator><creator>Liu, Jinfeng</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8873-847X</orcidid></search><sort><creationdate>201710</creationdate><title>Distributed output‐feedback fault detection and isolation of cascade process networks</title><author>Yin, Xunyuan ; Liu, Jinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4001-4c0f1f5f2c565afa95e6409fdf96943b9d365b48a2cc3feb3f7edd126a0615883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>actuator faults</topic><topic>chemical processes</topic><topic>Convergence</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Feedback</topic><topic>Noise measurement</topic><topic>nonlinear systems</topic><topic>Output feedback</topic><topic>sensor faults</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xunyuan</creatorcontrib><creatorcontrib>Liu, Jinfeng</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xunyuan</au><au>Liu, Jinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed output‐feedback fault detection and isolation of cascade process networks</atitle><jtitle>AIChE journal</jtitle><date>2017-10</date><risdate>2017</risdate><volume>63</volume><issue>10</issue><spage>4329</spage><epage>4342</epage><pages>4329-4342</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Distributed output‐feedback fault detection and isolation (FDI) of nonlinear cascade process networks that can be divided into subsystems is considered. Based on the assumption that an exponentially convergent estimator exists for each subsystem, a distributed state estimation system is developed. In the distributed state estimation system, a compensator is designed for each subsystem to compensate for subsystem interaction and the estimators for subsystems communicate to exchange information. It is shown that when there is no fault, the estimation error of the distributed estimation system converges to zero in the absence of system disturbances and measurement noise. For each subsystem, a state predictor is also designed to provide subsystem state predictions. A residual generator is designed for each subsystem based on subsystem state estimates given by the distributed state estimation system and subsystem state predictions given by the predictor. A subsystem residual generator generates two residual sequences, which act as references for FDI. A distributed FDI mechanism is proposed based on residuals. The proposed approach is able to handle both actuator faults and sensor faults by evaluating the residual signals. A chemical process example is introduced to demonstrate the effectiveness of the distributed FDI mechanism. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4329–4342, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15791</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8873-847X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2017-10, Vol.63 (10), p.4329-4342
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_1940993886
source Wiley Online Library Journals Frontfile Complete
subjects actuator faults
chemical processes
Convergence
Fault detection
Faults
Feedback
Noise measurement
nonlinear systems
Output feedback
sensor faults
State estimation
title Distributed output‐feedback fault detection and isolation of cascade process networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20output%E2%80%90feedback%20fault%20detection%20and%20isolation%20of%20cascade%20process%20networks&rft.jtitle=AIChE%20journal&rft.au=Yin,%20Xunyuan&rft.date=2017-10&rft.volume=63&rft.issue=10&rft.spage=4329&rft.epage=4342&rft.pages=4329-4342&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15791&rft_dat=%3Cproquest_cross%3E1940993886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940993886&rft_id=info:pmid/&rfr_iscdi=true