Birefringence measurement for validation of simulation of precision glass molding process

During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2017-10, Vol.100 (10), p.4680-4698
Hauptverfasser: Pallicity, Tarkes Dora, Vu, Anh‐Tuan, Ramesh, Krishnamurthi, Mahajan, Puneet, Liu, Gang, Dambon, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4698
container_issue 10
container_start_page 4680
container_title Journal of the American Ceramic Society
container_volume 100
creator Pallicity, Tarkes Dora
Vu, Anh‐Tuan
Ramesh, Krishnamurthi
Mahajan, Puneet
Liu, Gang
Dambon, Olaf
description During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.
doi_str_mv 10.1111/jace.15010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1940811357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940811357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8AsisSGl-BInscdStXyoEgsMTJZjXypXSVzsBtR_j0sQI7ec3tNzXy8h10BnEONuqzTOoKBAT8gEigLSTEB5SiaU0iyteEbPyUUI2yhBcDYh7_fWY-Ntv8FeY9KhCoPHDvt90jiffKrWGrW3rk9ckwTbDe2f2nnUNhzFplUhJJ1rTZwT605jCJfkrFFtwKvfPCVvq-Xr4jFdvzw8LebrVOfxzBRyFHUOxgiKtRIlF4yjynJVZ4Ixw3OErGoMZLpGMGXJVQWGcaYqzQQVKp-Sm3Fu3PsxYNjLrRt8H1dKEIxygLyoInU7Utq7EOLLcudtp_xBApVH6-TROvljXYRhhL9si4d_SPk8XyzHnm-gz3GW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940811357</pqid></control><display><type>article</type><title>Birefringence measurement for validation of simulation of precision glass molding process</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pallicity, Tarkes Dora ; Vu, Anh‐Tuan ; Ramesh, Krishnamurthi ; Mahajan, Puneet ; Liu, Gang ; Dambon, Olaf</creator><creatorcontrib>Pallicity, Tarkes Dora ; Vu, Anh‐Tuan ; Ramesh, Krishnamurthi ; Mahajan, Puneet ; Liu, Gang ; Dambon, Olaf</creatorcontrib><description>During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.15010</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Birefringence ; Computer simulation ; Cooling rate ; digital photoelasticity ; Displacement molding ; Finite element method ; Friction ; Glass ; Lenses ; Molding (process) ; Molds ; optical glass lens ; Photoelasticity ; precision glass molding ; Residual stress ; Resistance ; Rheological properties ; Simulation ; Tungsten carbide ; Ultrasonic testing ; Viscoelasticity</subject><ispartof>Journal of the American Ceramic Society, 2017-10, Vol.100 (10), p.4680-4698</ispartof><rights>2017 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</citedby><cites>FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</cites><orcidid>0000-0003-4445-0305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.15010$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.15010$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Pallicity, Tarkes Dora</creatorcontrib><creatorcontrib>Vu, Anh‐Tuan</creatorcontrib><creatorcontrib>Ramesh, Krishnamurthi</creatorcontrib><creatorcontrib>Mahajan, Puneet</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Dambon, Olaf</creatorcontrib><title>Birefringence measurement for validation of simulation of precision glass molding process</title><title>Journal of the American Ceramic Society</title><description>During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.</description><subject>Birefringence</subject><subject>Computer simulation</subject><subject>Cooling rate</subject><subject>digital photoelasticity</subject><subject>Displacement molding</subject><subject>Finite element method</subject><subject>Friction</subject><subject>Glass</subject><subject>Lenses</subject><subject>Molding (process)</subject><subject>Molds</subject><subject>optical glass lens</subject><subject>Photoelasticity</subject><subject>precision glass molding</subject><subject>Residual stress</subject><subject>Resistance</subject><subject>Rheological properties</subject><subject>Simulation</subject><subject>Tungsten carbide</subject><subject>Ultrasonic testing</subject><subject>Viscoelasticity</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqWw8AsisSGl-BInscdStXyoEgsMTJZjXypXSVzsBtR_j0sQI7ec3tNzXy8h10BnEONuqzTOoKBAT8gEigLSTEB5SiaU0iyteEbPyUUI2yhBcDYh7_fWY-Ntv8FeY9KhCoPHDvt90jiffKrWGrW3rk9ckwTbDe2f2nnUNhzFplUhJJ1rTZwT605jCJfkrFFtwKvfPCVvq-Xr4jFdvzw8LebrVOfxzBRyFHUOxgiKtRIlF4yjynJVZ4Ixw3OErGoMZLpGMGXJVQWGcaYqzQQVKp-Sm3Fu3PsxYNjLrRt8H1dKEIxygLyoInU7Utq7EOLLcudtp_xBApVH6-TROvljXYRhhL9si4d_SPk8XyzHnm-gz3GW</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Pallicity, Tarkes Dora</creator><creator>Vu, Anh‐Tuan</creator><creator>Ramesh, Krishnamurthi</creator><creator>Mahajan, Puneet</creator><creator>Liu, Gang</creator><creator>Dambon, Olaf</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4445-0305</orcidid></search><sort><creationdate>201710</creationdate><title>Birefringence measurement for validation of simulation of precision glass molding process</title><author>Pallicity, Tarkes Dora ; Vu, Anh‐Tuan ; Ramesh, Krishnamurthi ; Mahajan, Puneet ; Liu, Gang ; Dambon, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Birefringence</topic><topic>Computer simulation</topic><topic>Cooling rate</topic><topic>digital photoelasticity</topic><topic>Displacement molding</topic><topic>Finite element method</topic><topic>Friction</topic><topic>Glass</topic><topic>Lenses</topic><topic>Molding (process)</topic><topic>Molds</topic><topic>optical glass lens</topic><topic>Photoelasticity</topic><topic>precision glass molding</topic><topic>Residual stress</topic><topic>Resistance</topic><topic>Rheological properties</topic><topic>Simulation</topic><topic>Tungsten carbide</topic><topic>Ultrasonic testing</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallicity, Tarkes Dora</creatorcontrib><creatorcontrib>Vu, Anh‐Tuan</creatorcontrib><creatorcontrib>Ramesh, Krishnamurthi</creatorcontrib><creatorcontrib>Mahajan, Puneet</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Dambon, Olaf</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallicity, Tarkes Dora</au><au>Vu, Anh‐Tuan</au><au>Ramesh, Krishnamurthi</au><au>Mahajan, Puneet</au><au>Liu, Gang</au><au>Dambon, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Birefringence measurement for validation of simulation of precision glass molding process</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-10</date><risdate>2017</risdate><volume>100</volume><issue>10</issue><spage>4680</spage><epage>4698</epage><pages>4680-4698</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.15010</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4445-0305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2017-10, Vol.100 (10), p.4680-4698
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1940811357
source Wiley Online Library Journals Frontfile Complete
subjects Birefringence
Computer simulation
Cooling rate
digital photoelasticity
Displacement molding
Finite element method
Friction
Glass
Lenses
Molding (process)
Molds
optical glass lens
Photoelasticity
precision glass molding
Residual stress
Resistance
Rheological properties
Simulation
Tungsten carbide
Ultrasonic testing
Viscoelasticity
title Birefringence measurement for validation of simulation of precision glass molding process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Birefringence%20measurement%20for%20validation%20of%20simulation%20of%20precision%20glass%20molding%20process&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Pallicity,%20Tarkes%20Dora&rft.date=2017-10&rft.volume=100&rft.issue=10&rft.spage=4680&rft.epage=4698&rft.pages=4680-4698&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.15010&rft_dat=%3Cproquest_cross%3E1940811357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940811357&rft_id=info:pmid/&rfr_iscdi=true