Birefringence measurement for validation of simulation of precision glass molding process
During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturin...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2017-10, Vol.100 (10), p.4680-4698 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4698 |
---|---|
container_issue | 10 |
container_start_page | 4680 |
container_title | Journal of the American Ceramic Society |
container_volume | 100 |
creator | Pallicity, Tarkes Dora Vu, Anh‐Tuan Ramesh, Krishnamurthi Mahajan, Puneet Liu, Gang Dambon, Olaf |
description | During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens. |
doi_str_mv | 10.1111/jace.15010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1940811357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940811357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8AsisSGl-BInscdStXyoEgsMTJZjXypXSVzsBtR_j0sQI7ec3tNzXy8h10BnEONuqzTOoKBAT8gEigLSTEB5SiaU0iyteEbPyUUI2yhBcDYh7_fWY-Ntv8FeY9KhCoPHDvt90jiffKrWGrW3rk9ckwTbDe2f2nnUNhzFplUhJJ1rTZwT605jCJfkrFFtwKvfPCVvq-Xr4jFdvzw8LebrVOfxzBRyFHUOxgiKtRIlF4yjynJVZ4Ixw3OErGoMZLpGMGXJVQWGcaYqzQQVKp-Sm3Fu3PsxYNjLrRt8H1dKEIxygLyoInU7Utq7EOLLcudtp_xBApVH6-TROvljXYRhhL9si4d_SPk8XyzHnm-gz3GW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940811357</pqid></control><display><type>article</type><title>Birefringence measurement for validation of simulation of precision glass molding process</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pallicity, Tarkes Dora ; Vu, Anh‐Tuan ; Ramesh, Krishnamurthi ; Mahajan, Puneet ; Liu, Gang ; Dambon, Olaf</creator><creatorcontrib>Pallicity, Tarkes Dora ; Vu, Anh‐Tuan ; Ramesh, Krishnamurthi ; Mahajan, Puneet ; Liu, Gang ; Dambon, Olaf</creatorcontrib><description>During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.15010</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Birefringence ; Computer simulation ; Cooling rate ; digital photoelasticity ; Displacement molding ; Finite element method ; Friction ; Glass ; Lenses ; Molding (process) ; Molds ; optical glass lens ; Photoelasticity ; precision glass molding ; Residual stress ; Resistance ; Rheological properties ; Simulation ; Tungsten carbide ; Ultrasonic testing ; Viscoelasticity</subject><ispartof>Journal of the American Ceramic Society, 2017-10, Vol.100 (10), p.4680-4698</ispartof><rights>2017 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</citedby><cites>FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</cites><orcidid>0000-0003-4445-0305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.15010$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.15010$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Pallicity, Tarkes Dora</creatorcontrib><creatorcontrib>Vu, Anh‐Tuan</creatorcontrib><creatorcontrib>Ramesh, Krishnamurthi</creatorcontrib><creatorcontrib>Mahajan, Puneet</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Dambon, Olaf</creatorcontrib><title>Birefringence measurement for validation of simulation of precision glass molding process</title><title>Journal of the American Ceramic Society</title><description>During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.</description><subject>Birefringence</subject><subject>Computer simulation</subject><subject>Cooling rate</subject><subject>digital photoelasticity</subject><subject>Displacement molding</subject><subject>Finite element method</subject><subject>Friction</subject><subject>Glass</subject><subject>Lenses</subject><subject>Molding (process)</subject><subject>Molds</subject><subject>optical glass lens</subject><subject>Photoelasticity</subject><subject>precision glass molding</subject><subject>Residual stress</subject><subject>Resistance</subject><subject>Rheological properties</subject><subject>Simulation</subject><subject>Tungsten carbide</subject><subject>Ultrasonic testing</subject><subject>Viscoelasticity</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqWw8AsisSGl-BInscdStXyoEgsMTJZjXypXSVzsBtR_j0sQI7ec3tNzXy8h10BnEONuqzTOoKBAT8gEigLSTEB5SiaU0iyteEbPyUUI2yhBcDYh7_fWY-Ntv8FeY9KhCoPHDvt90jiffKrWGrW3rk9ckwTbDe2f2nnUNhzFplUhJJ1rTZwT605jCJfkrFFtwKvfPCVvq-Xr4jFdvzw8LebrVOfxzBRyFHUOxgiKtRIlF4yjynJVZ4Ixw3OErGoMZLpGMGXJVQWGcaYqzQQVKp-Sm3Fu3PsxYNjLrRt8H1dKEIxygLyoInU7Utq7EOLLcudtp_xBApVH6-TROvljXYRhhL9si4d_SPk8XyzHnm-gz3GW</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Pallicity, Tarkes Dora</creator><creator>Vu, Anh‐Tuan</creator><creator>Ramesh, Krishnamurthi</creator><creator>Mahajan, Puneet</creator><creator>Liu, Gang</creator><creator>Dambon, Olaf</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4445-0305</orcidid></search><sort><creationdate>201710</creationdate><title>Birefringence measurement for validation of simulation of precision glass molding process</title><author>Pallicity, Tarkes Dora ; Vu, Anh‐Tuan ; Ramesh, Krishnamurthi ; Mahajan, Puneet ; Liu, Gang ; Dambon, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3010-13e9b31dd90eba968948ea23ab2944d83e127fd12cbe1d668a71d484a7c4909a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Birefringence</topic><topic>Computer simulation</topic><topic>Cooling rate</topic><topic>digital photoelasticity</topic><topic>Displacement molding</topic><topic>Finite element method</topic><topic>Friction</topic><topic>Glass</topic><topic>Lenses</topic><topic>Molding (process)</topic><topic>Molds</topic><topic>optical glass lens</topic><topic>Photoelasticity</topic><topic>precision glass molding</topic><topic>Residual stress</topic><topic>Resistance</topic><topic>Rheological properties</topic><topic>Simulation</topic><topic>Tungsten carbide</topic><topic>Ultrasonic testing</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallicity, Tarkes Dora</creatorcontrib><creatorcontrib>Vu, Anh‐Tuan</creatorcontrib><creatorcontrib>Ramesh, Krishnamurthi</creatorcontrib><creatorcontrib>Mahajan, Puneet</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><creatorcontrib>Dambon, Olaf</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallicity, Tarkes Dora</au><au>Vu, Anh‐Tuan</au><au>Ramesh, Krishnamurthi</au><au>Mahajan, Puneet</au><au>Liu, Gang</au><au>Dambon, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Birefringence measurement for validation of simulation of precision glass molding process</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-10</date><risdate>2017</risdate><volume>100</volume><issue>10</issue><spage>4680</spage><epage>4698</epage><pages>4680-4698</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>During fabrication of glass lens by precision glass molding (PGM), residual stresses are setup, which adversely affect the optical performance of lens. Residual stresses can be obtained by measuring the residual birefringence. Numerical simulation is used in the industry to optimize the manufacturing process. Material properties of glass, contact conductance and friction coefficient at the glass‐mold interface are important parameters needed for simulations. In literature, these values are usually assumed without enough experimental justifications. Here, the viscoelastic thermo‐rheological simple (TRS) behavior of glass is experimentally characterized by the four‐point bending test. Contact conductance and friction coefficient at P‐SK57™ glass and Pt‐Ir coated WC mold interface are experimentally measured. A plano‐convex lens of P‐SK57™ glass is fabricated by PGM for two different cooling rates and whole field birefringence of the finished lens is measured by digital photoelasticity. The fabrication process is simulated using finite element method. The simulation is validated, for different stages of PGM process, by comparing the load acting on the mold and displacement of the molds. At the end of the process, the birefringence distribution is compared with the experimental data. A novel plotting scheme is developed for computing birefringence from FE simulation for any shape of lens.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.15010</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4445-0305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2017-10, Vol.100 (10), p.4680-4698 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_1940811357 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Birefringence Computer simulation Cooling rate digital photoelasticity Displacement molding Finite element method Friction Glass Lenses Molding (process) Molds optical glass lens Photoelasticity precision glass molding Residual stress Resistance Rheological properties Simulation Tungsten carbide Ultrasonic testing Viscoelasticity |
title | Birefringence measurement for validation of simulation of precision glass molding process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Birefringence%20measurement%20for%20validation%20of%20simulation%20of%20precision%20glass%20molding%20process&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Pallicity,%20Tarkes%20Dora&rft.date=2017-10&rft.volume=100&rft.issue=10&rft.spage=4680&rft.epage=4698&rft.pages=4680-4698&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.15010&rft_dat=%3Cproquest_cross%3E1940811357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940811357&rft_id=info:pmid/&rfr_iscdi=true |