Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells
The fabrication of multi-junction graded bandgap solar cells have been successfully implemented by electroplating three binary compound semiconductors from II-VI family. The three semiconductor materials grown by electroplating techniques are ZnS, CdS and CdTe thin films. The electrical conductivity...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2017-04, Vol.191, p.145-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 145 |
container_title | Materials chemistry and physics |
container_volume | 191 |
creator | Olusola, O.I. Madugu, M.L. Dharmadasa, I.M. |
description | The fabrication of multi-junction graded bandgap solar cells have been successfully implemented by electroplating three binary compound semiconductors from II-VI family. The three semiconductor materials grown by electroplating techniques are ZnS, CdS and CdTe thin films. The electrical conductivity type and energy bandgap of each of the three semiconductors were determined using photoelectrochemical (PEC) cell measurement and UV–Vis spectrophotometry techniques respectively. The PEC cell results show that all the three semiconductor materials have n-type electrical conductivity. These two material characterisation techniques were considered in this paper in order to establish the relevant energy band diagram for device results, analysis and interpretation. Solar cells with the device structure glass/FTO/n-ZnS/n-CdS/n-CdTe/Au were then fabricated and characterised using current-voltage (I-V) and capacitance-voltage (C-V) techniques. From the I-V characteristics measurement, the fabricated device structures yielded an open circuit voltage (Voc) of 670 mV, short circuit current density (Jsc) of 41.5 mA cm−2 and fill-factor (FF) of 0.46 resulting in ∼12.8% efficiency when measured at room temperature under AM1.5 illumination conditions. The device structure showed an excellent rectification factor (RF) of 104.3 and ideality factor (n) of 1.88. The results obtained from the C-V measurement also showed that the device structures have a moderate doping level of 5.2 × 1015 cm−3.
•Electroplating of n-ZnS, n-CdS and n-CdTe binary compound semiconductors.•Fabrication of Schottky barrier solar cells from glass/FTO/n-ZnS/n-CdS/n-CdTe/Au.•Development of multi-junction graded bandgap solar cells using n-n-n structures. |
doi_str_mv | 10.1016/j.matchemphys.2017.01.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1940501016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058417300536</els_id><sourcerecordid>1940501016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-56c26cd4a75dd84d47fd28935bde8d2cf1088491f9b2704bf19bb52920d94d183</originalsourceid><addsrcrecordid>eNqNkDtPxDAQhC0EEsfjPxhRJ6wd5xKX6MRLQqIAGhrLsTd3jnJOsH1I_Ht8OgpKitU2M7M7HyFXDEoGbHkzlFudzAa38-Y7lhxYUwIrgTdHZMHaRhZVxfgxWQCvRQF1K07JWYwDZCFj1YLoJ_-FMbm1Ts6vadogxRFNCpN3hs5hmjEkh5FOPd3uxuSKYedNcpOnH_71ZmX384Z0HbRFSzvt7VrPNE6jDtTgOMYLctLrMeLl7z4n7_d3b6vH4vnl4Wl1-1wYAZCKemn40lihm9raVljR9Ja3sqo7i63lpmfQtkKyXna8AdH1THZdzSUHK4VlbXVOrg-5-enPXe6khmkXfD6pmBRQw55XVsmDyoQpxoC9moPb6vCtGKi9Qg3qD1G1J6qAqUw0e1cHL-YaXw6DisahN2hdyMiUndw_Un4AlUaGIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940501016</pqid></control><display><type>article</type><title>Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Olusola, O.I. ; Madugu, M.L. ; Dharmadasa, I.M.</creator><creatorcontrib>Olusola, O.I. ; Madugu, M.L. ; Dharmadasa, I.M.</creatorcontrib><description>The fabrication of multi-junction graded bandgap solar cells have been successfully implemented by electroplating three binary compound semiconductors from II-VI family. The three semiconductor materials grown by electroplating techniques are ZnS, CdS and CdTe thin films. The electrical conductivity type and energy bandgap of each of the three semiconductors were determined using photoelectrochemical (PEC) cell measurement and UV–Vis spectrophotometry techniques respectively. The PEC cell results show that all the three semiconductor materials have n-type electrical conductivity. These two material characterisation techniques were considered in this paper in order to establish the relevant energy band diagram for device results, analysis and interpretation. Solar cells with the device structure glass/FTO/n-ZnS/n-CdS/n-CdTe/Au were then fabricated and characterised using current-voltage (I-V) and capacitance-voltage (C-V) techniques. From the I-V characteristics measurement, the fabricated device structures yielded an open circuit voltage (Voc) of 670 mV, short circuit current density (Jsc) of 41.5 mA cm−2 and fill-factor (FF) of 0.46 resulting in ∼12.8% efficiency when measured at room temperature under AM1.5 illumination conditions. The device structure showed an excellent rectification factor (RF) of 104.3 and ideality factor (n) of 1.88. The results obtained from the C-V measurement also showed that the device structures have a moderate doping level of 5.2 × 1015 cm−3.
•Electroplating of n-ZnS, n-CdS and n-CdTe binary compound semiconductors.•Fabrication of Schottky barrier solar cells from glass/FTO/n-ZnS/n-CdS/n-CdTe/Au.•Development of multi-junction graded bandgap solar cells using n-n-n structures.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2017.01.027</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Band gap ; Buffer layer ; Cadmium sulfide ; Cadmium tellurides ; Conductivity ; Current voltage characteristics ; Electrical resistivity ; Electrodeposition ; Electronic properties ; Electroplating ; Graded bandgap device structures ; n-n-n+Schottky barrier ; N-type semiconductors ; Open circuit voltage ; Photovoltaic cells ; Semiconductor materials ; Semiconductors ; Solar cells ; Spectrophotometry ; Studies ; Thin films ; Zinc sulfide</subject><ispartof>Materials chemistry and physics, 2017-04, Vol.191, p.145-150</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-56c26cd4a75dd84d47fd28935bde8d2cf1088491f9b2704bf19bb52920d94d183</citedby><cites>FETCH-LOGICAL-c400t-56c26cd4a75dd84d47fd28935bde8d2cf1088491f9b2704bf19bb52920d94d183</cites><orcidid>0000-0002-2046-6305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2017.01.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Olusola, O.I.</creatorcontrib><creatorcontrib>Madugu, M.L.</creatorcontrib><creatorcontrib>Dharmadasa, I.M.</creatorcontrib><title>Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells</title><title>Materials chemistry and physics</title><description>The fabrication of multi-junction graded bandgap solar cells have been successfully implemented by electroplating three binary compound semiconductors from II-VI family. The three semiconductor materials grown by electroplating techniques are ZnS, CdS and CdTe thin films. The electrical conductivity type and energy bandgap of each of the three semiconductors were determined using photoelectrochemical (PEC) cell measurement and UV–Vis spectrophotometry techniques respectively. The PEC cell results show that all the three semiconductor materials have n-type electrical conductivity. These two material characterisation techniques were considered in this paper in order to establish the relevant energy band diagram for device results, analysis and interpretation. Solar cells with the device structure glass/FTO/n-ZnS/n-CdS/n-CdTe/Au were then fabricated and characterised using current-voltage (I-V) and capacitance-voltage (C-V) techniques. From the I-V characteristics measurement, the fabricated device structures yielded an open circuit voltage (Voc) of 670 mV, short circuit current density (Jsc) of 41.5 mA cm−2 and fill-factor (FF) of 0.46 resulting in ∼12.8% efficiency when measured at room temperature under AM1.5 illumination conditions. The device structure showed an excellent rectification factor (RF) of 104.3 and ideality factor (n) of 1.88. The results obtained from the C-V measurement also showed that the device structures have a moderate doping level of 5.2 × 1015 cm−3.
•Electroplating of n-ZnS, n-CdS and n-CdTe binary compound semiconductors.•Fabrication of Schottky barrier solar cells from glass/FTO/n-ZnS/n-CdS/n-CdTe/Au.•Development of multi-junction graded bandgap solar cells using n-n-n structures.</description><subject>Band gap</subject><subject>Buffer layer</subject><subject>Cadmium sulfide</subject><subject>Cadmium tellurides</subject><subject>Conductivity</subject><subject>Current voltage characteristics</subject><subject>Electrical resistivity</subject><subject>Electrodeposition</subject><subject>Electronic properties</subject><subject>Electroplating</subject><subject>Graded bandgap device structures</subject><subject>n-n-n+Schottky barrier</subject><subject>N-type semiconductors</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Semiconductor materials</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Spectrophotometry</subject><subject>Studies</subject><subject>Thin films</subject><subject>Zinc sulfide</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPxDAQhC0EEsfjPxhRJ6wd5xKX6MRLQqIAGhrLsTd3jnJOsH1I_Ht8OgpKitU2M7M7HyFXDEoGbHkzlFudzAa38-Y7lhxYUwIrgTdHZMHaRhZVxfgxWQCvRQF1K07JWYwDZCFj1YLoJ_-FMbm1Ts6vadogxRFNCpN3hs5hmjEkh5FOPd3uxuSKYedNcpOnH_71ZmX384Z0HbRFSzvt7VrPNE6jDtTgOMYLctLrMeLl7z4n7_d3b6vH4vnl4Wl1-1wYAZCKemn40lihm9raVljR9Ja3sqo7i63lpmfQtkKyXna8AdH1THZdzSUHK4VlbXVOrg-5-enPXe6khmkXfD6pmBRQw55XVsmDyoQpxoC9moPb6vCtGKi9Qg3qD1G1J6qAqUw0e1cHL-YaXw6DisahN2hdyMiUndw_Un4AlUaGIg</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Olusola, O.I.</creator><creator>Madugu, M.L.</creator><creator>Dharmadasa, I.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2046-6305</orcidid></search><sort><creationdate>20170415</creationdate><title>Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells</title><author>Olusola, O.I. ; Madugu, M.L. ; Dharmadasa, I.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-56c26cd4a75dd84d47fd28935bde8d2cf1088491f9b2704bf19bb52920d94d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Band gap</topic><topic>Buffer layer</topic><topic>Cadmium sulfide</topic><topic>Cadmium tellurides</topic><topic>Conductivity</topic><topic>Current voltage characteristics</topic><topic>Electrical resistivity</topic><topic>Electrodeposition</topic><topic>Electronic properties</topic><topic>Electroplating</topic><topic>Graded bandgap device structures</topic><topic>n-n-n+Schottky barrier</topic><topic>N-type semiconductors</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Semiconductor materials</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Spectrophotometry</topic><topic>Studies</topic><topic>Thin films</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olusola, O.I.</creatorcontrib><creatorcontrib>Madugu, M.L.</creatorcontrib><creatorcontrib>Dharmadasa, I.M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olusola, O.I.</au><au>Madugu, M.L.</au><au>Dharmadasa, I.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells</atitle><jtitle>Materials chemistry and physics</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>191</volume><spage>145</spage><epage>150</epage><pages>145-150</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>The fabrication of multi-junction graded bandgap solar cells have been successfully implemented by electroplating three binary compound semiconductors from II-VI family. The three semiconductor materials grown by electroplating techniques are ZnS, CdS and CdTe thin films. The electrical conductivity type and energy bandgap of each of the three semiconductors were determined using photoelectrochemical (PEC) cell measurement and UV–Vis spectrophotometry techniques respectively. The PEC cell results show that all the three semiconductor materials have n-type electrical conductivity. These two material characterisation techniques were considered in this paper in order to establish the relevant energy band diagram for device results, analysis and interpretation. Solar cells with the device structure glass/FTO/n-ZnS/n-CdS/n-CdTe/Au were then fabricated and characterised using current-voltage (I-V) and capacitance-voltage (C-V) techniques. From the I-V characteristics measurement, the fabricated device structures yielded an open circuit voltage (Voc) of 670 mV, short circuit current density (Jsc) of 41.5 mA cm−2 and fill-factor (FF) of 0.46 resulting in ∼12.8% efficiency when measured at room temperature under AM1.5 illumination conditions. The device structure showed an excellent rectification factor (RF) of 104.3 and ideality factor (n) of 1.88. The results obtained from the C-V measurement also showed that the device structures have a moderate doping level of 5.2 × 1015 cm−3.
•Electroplating of n-ZnS, n-CdS and n-CdTe binary compound semiconductors.•Fabrication of Schottky barrier solar cells from glass/FTO/n-ZnS/n-CdS/n-CdTe/Au.•Development of multi-junction graded bandgap solar cells using n-n-n structures.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2017.01.027</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2046-6305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2017-04, Vol.191, p.145-150 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_journals_1940501016 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Band gap Buffer layer Cadmium sulfide Cadmium tellurides Conductivity Current voltage characteristics Electrical resistivity Electrodeposition Electronic properties Electroplating Graded bandgap device structures n-n-n+Schottky barrier N-type semiconductors Open circuit voltage Photovoltaic cells Semiconductor materials Semiconductors Solar cells Spectrophotometry Studies Thin films Zinc sulfide |
title | Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20electronic%20properties%20of%20multi-junction%20ZnS/CdS/CdTe%20graded%20bandgap%20solar%20cells&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Olusola,%20O.I.&rft.date=2017-04-15&rft.volume=191&rft.spage=145&rft.epage=150&rft.pages=145-150&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2017.01.027&rft_dat=%3Cproquest_cross%3E1940501016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940501016&rft_id=info:pmid/&rft_els_id=S0254058417300536&rfr_iscdi=true |