Lattice Boltzmann simulation of CO2 reactive transport in network fractured media
Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to...
Gespeichert in:
Veröffentlicht in: | Water resources research 2017-08, Vol.53 (8), p.7366-7381 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7381 |
---|---|
container_issue | 8 |
container_start_page | 7366 |
container_title | Water resources research |
container_volume | 53 |
creator | Tian, Zhiwei Wang, Junye |
description | Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.
Key Points
Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM
Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks
Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front |
doi_str_mv | 10.1002/2017WR021063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1940442034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940442034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2708-522a44f1a48b9b6824f5c28e108e6d6e8876c97eb73e15f8fda94f637823ee613</originalsourceid><addsrcrecordid>eNpNkE1LxDAYhIMouK7e_AEBz9U3H03Soxa_YGFxUfZYsu0byNo2a5oq66-3sh48zWEeZpgh5JLBNQPgNxyYXq-AM1DiiMxYIWWmCy2OyQxAioyJQp-Ss2HYAjCZKz0jLwubkq-R3oU2fXe27-ngu7G1yYeeBkfLJacRbZ38J9IUbT_sQkzU97TH9BXiO3VxcseIDe2w8facnDjbDnjxp3Py9nD_Wj5li-Xjc3m7yGquwWQ551ZKx6w0m2KjDJcur7lBBgZVo9AYrepC40YLZLkzrrGFdEpowwWiYmJOrg65uxg-RhxStQ1j7KfKahoOUnIQcqLEgfryLe6rXfSdjfuKQfX7WPX_sWq9KlecG2bED83TX4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940442034</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tian, Zhiwei ; Wang, Junye</creator><creatorcontrib>Tian, Zhiwei ; Wang, Junye</creatorcontrib><description>Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.
Key Points
Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM
Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks
Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2017WR021063</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Aquifers ; Biological evolution ; Carbon dioxide ; Carbon dioxide control ; Carbon dioxide emissions ; Carbon sequestration ; Climate ; Climate change ; CO2 reactive transport ; Computer simulation ; Distribution ; Evolution ; fracture network ; Fractures ; Geology ; Groundwater ; Hydrocarbons ; Interactions ; lattice Boltzmann model ; Porosity ; Porous media ; Properties ; Rocks ; Simulation ; Transport ; Transport properties</subject><ispartof>Water resources research, 2017-08, Vol.53 (8), p.7366-7381</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2708-522a44f1a48b9b6824f5c28e108e6d6e8876c97eb73e15f8fda94f637823ee613</citedby><orcidid>0000-0002-1471-7403 ; 0000-0001-5562-1400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017WR021063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017WR021063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Tian, Zhiwei</creatorcontrib><creatorcontrib>Wang, Junye</creatorcontrib><title>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</title><title>Water resources research</title><description>Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.
Key Points
Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM
Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks
Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front</description><subject>Aquifers</subject><subject>Biological evolution</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide control</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Climate</subject><subject>Climate change</subject><subject>CO2 reactive transport</subject><subject>Computer simulation</subject><subject>Distribution</subject><subject>Evolution</subject><subject>fracture network</subject><subject>Fractures</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Hydrocarbons</subject><subject>Interactions</subject><subject>lattice Boltzmann model</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Properties</subject><subject>Rocks</subject><subject>Simulation</subject><subject>Transport</subject><subject>Transport properties</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAYhIMouK7e_AEBz9U3H03Soxa_YGFxUfZYsu0byNo2a5oq66-3sh48zWEeZpgh5JLBNQPgNxyYXq-AM1DiiMxYIWWmCy2OyQxAioyJQp-Ss2HYAjCZKz0jLwubkq-R3oU2fXe27-ngu7G1yYeeBkfLJacRbZ38J9IUbT_sQkzU97TH9BXiO3VxcseIDe2w8facnDjbDnjxp3Py9nD_Wj5li-Xjc3m7yGquwWQ551ZKx6w0m2KjDJcur7lBBgZVo9AYrepC40YLZLkzrrGFdEpowwWiYmJOrg65uxg-RhxStQ1j7KfKahoOUnIQcqLEgfryLe6rXfSdjfuKQfX7WPX_sWq9KlecG2bED83TX4E</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Tian, Zhiwei</creator><creator>Wang, Junye</creator><general>John Wiley & Sons, Inc</general><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-1471-7403</orcidid><orcidid>https://orcid.org/0000-0001-5562-1400</orcidid></search><sort><creationdate>201708</creationdate><title>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</title><author>Tian, Zhiwei ; Wang, Junye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2708-522a44f1a48b9b6824f5c28e108e6d6e8876c97eb73e15f8fda94f637823ee613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquifers</topic><topic>Biological evolution</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide control</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Climate</topic><topic>Climate change</topic><topic>CO2 reactive transport</topic><topic>Computer simulation</topic><topic>Distribution</topic><topic>Evolution</topic><topic>fracture network</topic><topic>Fractures</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Hydrocarbons</topic><topic>Interactions</topic><topic>lattice Boltzmann model</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Properties</topic><topic>Rocks</topic><topic>Simulation</topic><topic>Transport</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhiwei</creatorcontrib><creatorcontrib>Wang, Junye</creatorcontrib><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhiwei</au><au>Wang, Junye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</atitle><jtitle>Water resources research</jtitle><date>2017-08</date><risdate>2017</risdate><volume>53</volume><issue>8</issue><spage>7366</spage><epage>7381</epage><pages>7366-7381</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.
Key Points
Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM
Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks
Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2017WR021063</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1471-7403</orcidid><orcidid>https://orcid.org/0000-0001-5562-1400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2017-08, Vol.53 (8), p.7366-7381 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_1940442034 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aquifers Biological evolution Carbon dioxide Carbon dioxide control Carbon dioxide emissions Carbon sequestration Climate Climate change CO2 reactive transport Computer simulation Distribution Evolution fracture network Fractures Geology Groundwater Hydrocarbons Interactions lattice Boltzmann model Porosity Porous media Properties Rocks Simulation Transport Transport properties |
title | Lattice Boltzmann simulation of CO2 reactive transport in network fractured media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20of%20CO2%20reactive%20transport%20in%20network%20fractured%20media&rft.jtitle=Water%20resources%20research&rft.au=Tian,%20Zhiwei&rft.date=2017-08&rft.volume=53&rft.issue=8&rft.spage=7366&rft.epage=7381&rft.pages=7366-7381&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2017WR021063&rft_dat=%3Cproquest_wiley%3E1940442034%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940442034&rft_id=info:pmid/&rfr_iscdi=true |