Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2017-08, Vol.53 (8), p.7366-7381
Hauptverfasser: Tian, Zhiwei, Wang, Junye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7381
container_issue 8
container_start_page 7366
container_title Water resources research
container_volume 53
creator Tian, Zhiwei
Wang, Junye
description Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity. Key Points Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front
doi_str_mv 10.1002/2017WR021063
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1940442034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940442034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2708-522a44f1a48b9b6824f5c28e108e6d6e8876c97eb73e15f8fda94f637823ee613</originalsourceid><addsrcrecordid>eNpNkE1LxDAYhIMouK7e_AEBz9U3H03Soxa_YGFxUfZYsu0byNo2a5oq66-3sh48zWEeZpgh5JLBNQPgNxyYXq-AM1DiiMxYIWWmCy2OyQxAioyJQp-Ss2HYAjCZKz0jLwubkq-R3oU2fXe27-ngu7G1yYeeBkfLJacRbZ38J9IUbT_sQkzU97TH9BXiO3VxcseIDe2w8facnDjbDnjxp3Py9nD_Wj5li-Xjc3m7yGquwWQ551ZKx6w0m2KjDJcur7lBBgZVo9AYrepC40YLZLkzrrGFdEpowwWiYmJOrg65uxg-RhxStQ1j7KfKahoOUnIQcqLEgfryLe6rXfSdjfuKQfX7WPX_sWq9KlecG2bED83TX4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940442034</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tian, Zhiwei ; Wang, Junye</creator><creatorcontrib>Tian, Zhiwei ; Wang, Junye</creatorcontrib><description>Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity. Key Points Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2017WR021063</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aquifers ; Biological evolution ; Carbon dioxide ; Carbon dioxide control ; Carbon dioxide emissions ; Carbon sequestration ; Climate ; Climate change ; CO2 reactive transport ; Computer simulation ; Distribution ; Evolution ; fracture network ; Fractures ; Geology ; Groundwater ; Hydrocarbons ; Interactions ; lattice Boltzmann model ; Porosity ; Porous media ; Properties ; Rocks ; Simulation ; Transport ; Transport properties</subject><ispartof>Water resources research, 2017-08, Vol.53 (8), p.7366-7381</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2708-522a44f1a48b9b6824f5c28e108e6d6e8876c97eb73e15f8fda94f637823ee613</citedby><orcidid>0000-0002-1471-7403 ; 0000-0001-5562-1400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017WR021063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017WR021063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Tian, Zhiwei</creatorcontrib><creatorcontrib>Wang, Junye</creatorcontrib><title>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</title><title>Water resources research</title><description>Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity. Key Points Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front</description><subject>Aquifers</subject><subject>Biological evolution</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide control</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Climate</subject><subject>Climate change</subject><subject>CO2 reactive transport</subject><subject>Computer simulation</subject><subject>Distribution</subject><subject>Evolution</subject><subject>fracture network</subject><subject>Fractures</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Hydrocarbons</subject><subject>Interactions</subject><subject>lattice Boltzmann model</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Properties</subject><subject>Rocks</subject><subject>Simulation</subject><subject>Transport</subject><subject>Transport properties</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAYhIMouK7e_AEBz9U3H03Soxa_YGFxUfZYsu0byNo2a5oq66-3sh48zWEeZpgh5JLBNQPgNxyYXq-AM1DiiMxYIWWmCy2OyQxAioyJQp-Ss2HYAjCZKz0jLwubkq-R3oU2fXe27-ngu7G1yYeeBkfLJacRbZ38J9IUbT_sQkzU97TH9BXiO3VxcseIDe2w8facnDjbDnjxp3Py9nD_Wj5li-Xjc3m7yGquwWQ551ZKx6w0m2KjDJcur7lBBgZVo9AYrepC40YLZLkzrrGFdEpowwWiYmJOrg65uxg-RhxStQ1j7KfKahoOUnIQcqLEgfryLe6rXfSdjfuKQfX7WPX_sWq9KlecG2bED83TX4E</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Tian, Zhiwei</creator><creator>Wang, Junye</creator><general>John Wiley &amp; Sons, Inc</general><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-1471-7403</orcidid><orcidid>https://orcid.org/0000-0001-5562-1400</orcidid></search><sort><creationdate>201708</creationdate><title>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</title><author>Tian, Zhiwei ; Wang, Junye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2708-522a44f1a48b9b6824f5c28e108e6d6e8876c97eb73e15f8fda94f637823ee613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquifers</topic><topic>Biological evolution</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide control</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Climate</topic><topic>Climate change</topic><topic>CO2 reactive transport</topic><topic>Computer simulation</topic><topic>Distribution</topic><topic>Evolution</topic><topic>fracture network</topic><topic>Fractures</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Hydrocarbons</topic><topic>Interactions</topic><topic>lattice Boltzmann model</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Properties</topic><topic>Rocks</topic><topic>Simulation</topic><topic>Transport</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhiwei</creatorcontrib><creatorcontrib>Wang, Junye</creatorcontrib><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhiwei</au><au>Wang, Junye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</atitle><jtitle>Water resources research</jtitle><date>2017-08</date><risdate>2017</risdate><volume>53</volume><issue>8</issue><spage>7366</spage><epage>7381</epage><pages>7366-7381</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well‐known, difficult process in simulating the dynamic interaction of fracture‐matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture‐matrix interactions using multilayer bounce‐back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well‐matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity. Key Points Development of fracture‐matrix interface bounce‐back treatment for coupled reactive transport LBM Applications of multicomponent reactive transport LBM to CO2 geological sequestration in fracture networks Capability of the LBM model to simulate the complex transport processes with dynamic porosity change and unsaturated reaction front</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017WR021063</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1471-7403</orcidid><orcidid>https://orcid.org/0000-0001-5562-1400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2017-08, Vol.53 (8), p.7366-7381
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_1940442034
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aquifers
Biological evolution
Carbon dioxide
Carbon dioxide control
Carbon dioxide emissions
Carbon sequestration
Climate
Climate change
CO2 reactive transport
Computer simulation
Distribution
Evolution
fracture network
Fractures
Geology
Groundwater
Hydrocarbons
Interactions
lattice Boltzmann model
Porosity
Porous media
Properties
Rocks
Simulation
Transport
Transport properties
title Lattice Boltzmann simulation of CO2 reactive transport in network fractured media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20of%20CO2%20reactive%20transport%20in%20network%20fractured%20media&rft.jtitle=Water%20resources%20research&rft.au=Tian,%20Zhiwei&rft.date=2017-08&rft.volume=53&rft.issue=8&rft.spage=7366&rft.epage=7381&rft.pages=7366-7381&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2017WR021063&rft_dat=%3Cproquest_wiley%3E1940442034%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940442034&rft_id=info:pmid/&rfr_iscdi=true