Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems
Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on...
Gespeichert in:
Veröffentlicht in: | Basic & clinical pharmacology & toxicology 2017-09, Vol.121 (S3), p.16-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | S3 |
container_start_page | 16 |
container_title | Basic & clinical pharmacology & toxicology |
container_volume | 121 |
creator | Zhivagui, Maria Korenjak, Michael Zavadil, Jiri |
description | Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures. |
doi_str_mv | 10.1111/bcpt.12690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939782031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939782031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMobk4v_gApeBM685q0XY5aplM2FLadQ5q8jo6urUmL7t_b2enRXF4OH997fIRcAx1D9-5TXTdjCCJBT8gQYh748YSz078_CwfkwrktpUHMgZ6TQRDHIY-AD8nrojJYFHm58RZto5q8Kr1ljbqxyqsyb9buVOklyuq8rDZYOm_tDuz0q0ab77BsVOEt967BnbskZ5kqHF4d54isn6arZObP355fkoe5r5lg1I-EiSIeI9WMIg_RgEJjODAlGGYBKA00TLMsNUIwyMKIsxgDjhq04NREbERue29tq48WXSO3VWvLbqUEwUQ8CSiDjrrrKW0r5yxmsu4OVnYvgcpDNnnIJn-ydfDNUdmmOzR_6G-nDoAe-MwL3P-jko_J-6qXfgPpX3ei</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939782031</pqid></control><display><type>article</type><title>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zhivagui, Maria ; Korenjak, Michael ; Zavadil, Jiri</creator><creatorcontrib>Zhivagui, Maria ; Korenjak, Michael ; Zavadil, Jiri</creatorcontrib><description>Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.</description><identifier>ISSN: 1742-7835</identifier><identifier>EISSN: 1742-7843</identifier><identifier>DOI: 10.1111/bcpt.12690</identifier><identifier>PMID: 27754614</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Cancer ; Carcinogens ; Carcinogens - toxicity ; Disease Models, Animal ; Environmental Exposure - adverse effects ; Genes, Reporter - genetics ; Genetic Engineering - methods ; Genomes ; High-Throughput Nucleotide Sequencing ; Humans ; Models, Genetic ; Mutagenicity Tests - methods ; Mutagens - toxicity ; Mutation ; Neoplasms - genetics ; p53 Protein ; Polycyclic aromatic hydrocarbons ; Sequence Analysis, DNA - methods ; Structure-function relationships ; Tumors ; Ultraviolet radiation</subject><ispartof>Basic & clinical pharmacology & toxicology, 2017-09, Vol.121 (S3), p.16-22</ispartof><rights>2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society)</rights><rights>2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).</rights><rights>Copyright © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society). Published by John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</citedby><cites>FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbcpt.12690$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbcpt.12690$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27754614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhivagui, Maria</creatorcontrib><creatorcontrib>Korenjak, Michael</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><title>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</title><title>Basic & clinical pharmacology & toxicology</title><addtitle>Basic Clin Pharmacol Toxicol</addtitle><description>Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.</description><subject>Animals</subject><subject>Cancer</subject><subject>Carcinogens</subject><subject>Carcinogens - toxicity</subject><subject>Disease Models, Animal</subject><subject>Environmental Exposure - adverse effects</subject><subject>Genes, Reporter - genetics</subject><subject>Genetic Engineering - methods</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Mutagenicity Tests - methods</subject><subject>Mutagens - toxicity</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>p53 Protein</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Structure-function relationships</subject><subject>Tumors</subject><subject>Ultraviolet radiation</subject><issn>1742-7835</issn><issn>1742-7843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFLwzAUgIMobk4v_gApeBM685q0XY5aplM2FLadQ5q8jo6urUmL7t_b2enRXF4OH997fIRcAx1D9-5TXTdjCCJBT8gQYh748YSz078_CwfkwrktpUHMgZ6TQRDHIY-AD8nrojJYFHm58RZto5q8Kr1ljbqxyqsyb9buVOklyuq8rDZYOm_tDuz0q0ab77BsVOEt967BnbskZ5kqHF4d54isn6arZObP355fkoe5r5lg1I-EiSIeI9WMIg_RgEJjODAlGGYBKA00TLMsNUIwyMKIsxgDjhq04NREbERue29tq48WXSO3VWvLbqUEwUQ8CSiDjrrrKW0r5yxmsu4OVnYvgcpDNnnIJn-ydfDNUdmmOzR_6G-nDoAe-MwL3P-jko_J-6qXfgPpX3ei</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zhivagui, Maria</creator><creator>Korenjak, Michael</creator><creator>Zavadil, Jiri</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>201709</creationdate><title>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</title><author>Zhivagui, Maria ; Korenjak, Michael ; Zavadil, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Carcinogens</topic><topic>Carcinogens - toxicity</topic><topic>Disease Models, Animal</topic><topic>Environmental Exposure - adverse effects</topic><topic>Genes, Reporter - genetics</topic><topic>Genetic Engineering - methods</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Mutagenicity Tests - methods</topic><topic>Mutagens - toxicity</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>p53 Protein</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Structure-function relationships</topic><topic>Tumors</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhivagui, Maria</creatorcontrib><creatorcontrib>Korenjak, Michael</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Basic & clinical pharmacology & toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhivagui, Maria</au><au>Korenjak, Michael</au><au>Zavadil, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</atitle><jtitle>Basic & clinical pharmacology & toxicology</jtitle><addtitle>Basic Clin Pharmacol Toxicol</addtitle><date>2017-09</date><risdate>2017</risdate><volume>121</volume><issue>S3</issue><spage>16</spage><epage>22</epage><pages>16-22</pages><issn>1742-7835</issn><eissn>1742-7843</eissn><abstract>Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27754614</pmid><doi>10.1111/bcpt.12690</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7835 |
ispartof | Basic & clinical pharmacology & toxicology, 2017-09, Vol.121 (S3), p.16-22 |
issn | 1742-7835 1742-7843 |
language | eng |
recordid | cdi_proquest_journals_1939782031 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Animals Cancer Carcinogens Carcinogens - toxicity Disease Models, Animal Environmental Exposure - adverse effects Genes, Reporter - genetics Genetic Engineering - methods Genomes High-Throughput Nucleotide Sequencing Humans Models, Genetic Mutagenicity Tests - methods Mutagens - toxicity Mutation Neoplasms - genetics p53 Protein Polycyclic aromatic hydrocarbons Sequence Analysis, DNA - methods Structure-function relationships Tumors Ultraviolet radiation |
title | Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Mutation%20Spectra%20of%20Human%20Carcinogens%20Using%20Experimental%20Systems&rft.jtitle=Basic%20&%20clinical%20pharmacology%20&%20toxicology&rft.au=Zhivagui,%20Maria&rft.date=2017-09&rft.volume=121&rft.issue=S3&rft.spage=16&rft.epage=22&rft.pages=16-22&rft.issn=1742-7835&rft.eissn=1742-7843&rft_id=info:doi/10.1111/bcpt.12690&rft_dat=%3Cproquest_cross%3E1939782031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939782031&rft_id=info:pmid/27754614&rfr_iscdi=true |