Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems

Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basic & clinical pharmacology & toxicology 2017-09, Vol.121 (S3), p.16-22
Hauptverfasser: Zhivagui, Maria, Korenjak, Michael, Zavadil, Jiri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue S3
container_start_page 16
container_title Basic & clinical pharmacology & toxicology
container_volume 121
creator Zhivagui, Maria
Korenjak, Michael
Zavadil, Jiri
description Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.
doi_str_mv 10.1111/bcpt.12690
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939782031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939782031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</originalsourceid><addsrcrecordid>eNp9kEFLwzAUgIMobk4v_gApeBM685q0XY5aplM2FLadQ5q8jo6urUmL7t_b2enRXF4OH997fIRcAx1D9-5TXTdjCCJBT8gQYh748YSz078_CwfkwrktpUHMgZ6TQRDHIY-AD8nrojJYFHm58RZto5q8Kr1ljbqxyqsyb9buVOklyuq8rDZYOm_tDuz0q0ab77BsVOEt967BnbskZ5kqHF4d54isn6arZObP355fkoe5r5lg1I-EiSIeI9WMIg_RgEJjODAlGGYBKA00TLMsNUIwyMKIsxgDjhq04NREbERue29tq48WXSO3VWvLbqUEwUQ8CSiDjrrrKW0r5yxmsu4OVnYvgcpDNnnIJn-ydfDNUdmmOzR_6G-nDoAe-MwL3P-jko_J-6qXfgPpX3ei</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939782031</pqid></control><display><type>article</type><title>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zhivagui, Maria ; Korenjak, Michael ; Zavadil, Jiri</creator><creatorcontrib>Zhivagui, Maria ; Korenjak, Michael ; Zavadil, Jiri</creatorcontrib><description>Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.</description><identifier>ISSN: 1742-7835</identifier><identifier>EISSN: 1742-7843</identifier><identifier>DOI: 10.1111/bcpt.12690</identifier><identifier>PMID: 27754614</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Cancer ; Carcinogens ; Carcinogens - toxicity ; Disease Models, Animal ; Environmental Exposure - adverse effects ; Genes, Reporter - genetics ; Genetic Engineering - methods ; Genomes ; High-Throughput Nucleotide Sequencing ; Humans ; Models, Genetic ; Mutagenicity Tests - methods ; Mutagens - toxicity ; Mutation ; Neoplasms - genetics ; p53 Protein ; Polycyclic aromatic hydrocarbons ; Sequence Analysis, DNA - methods ; Structure-function relationships ; Tumors ; Ultraviolet radiation</subject><ispartof>Basic &amp; clinical pharmacology &amp; toxicology, 2017-09, Vol.121 (S3), p.16-22</ispartof><rights>2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society)</rights><rights>2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).</rights><rights>Copyright © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society). Published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</citedby><cites>FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbcpt.12690$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbcpt.12690$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27754614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhivagui, Maria</creatorcontrib><creatorcontrib>Korenjak, Michael</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><title>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</title><title>Basic &amp; clinical pharmacology &amp; toxicology</title><addtitle>Basic Clin Pharmacol Toxicol</addtitle><description>Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.</description><subject>Animals</subject><subject>Cancer</subject><subject>Carcinogens</subject><subject>Carcinogens - toxicity</subject><subject>Disease Models, Animal</subject><subject>Environmental Exposure - adverse effects</subject><subject>Genes, Reporter - genetics</subject><subject>Genetic Engineering - methods</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Mutagenicity Tests - methods</subject><subject>Mutagens - toxicity</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>p53 Protein</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Structure-function relationships</subject><subject>Tumors</subject><subject>Ultraviolet radiation</subject><issn>1742-7835</issn><issn>1742-7843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFLwzAUgIMobk4v_gApeBM685q0XY5aplM2FLadQ5q8jo6urUmL7t_b2enRXF4OH997fIRcAx1D9-5TXTdjCCJBT8gQYh748YSz078_CwfkwrktpUHMgZ6TQRDHIY-AD8nrojJYFHm58RZto5q8Kr1ljbqxyqsyb9buVOklyuq8rDZYOm_tDuz0q0ab77BsVOEt967BnbskZ5kqHF4d54isn6arZObP355fkoe5r5lg1I-EiSIeI9WMIg_RgEJjODAlGGYBKA00TLMsNUIwyMKIsxgDjhq04NREbERue29tq48WXSO3VWvLbqUEwUQ8CSiDjrrrKW0r5yxmsu4OVnYvgcpDNnnIJn-ydfDNUdmmOzR_6G-nDoAe-MwL3P-jko_J-6qXfgPpX3ei</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zhivagui, Maria</creator><creator>Korenjak, Michael</creator><creator>Zavadil, Jiri</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>201709</creationdate><title>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</title><author>Zhivagui, Maria ; Korenjak, Michael ; Zavadil, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-69d6647e0c30e45ed1aedd413a93ef21ac105bffbd9931f56437e24ec1c940d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Carcinogens</topic><topic>Carcinogens - toxicity</topic><topic>Disease Models, Animal</topic><topic>Environmental Exposure - adverse effects</topic><topic>Genes, Reporter - genetics</topic><topic>Genetic Engineering - methods</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Mutagenicity Tests - methods</topic><topic>Mutagens - toxicity</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>p53 Protein</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Structure-function relationships</topic><topic>Tumors</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhivagui, Maria</creatorcontrib><creatorcontrib>Korenjak, Michael</creatorcontrib><creatorcontrib>Zavadil, Jiri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Basic &amp; clinical pharmacology &amp; toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhivagui, Maria</au><au>Korenjak, Michael</au><au>Zavadil, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems</atitle><jtitle>Basic &amp; clinical pharmacology &amp; toxicology</jtitle><addtitle>Basic Clin Pharmacol Toxicol</addtitle><date>2017-09</date><risdate>2017</risdate><volume>121</volume><issue>S3</issue><spage>16</spage><epage>22</epage><pages>16-22</pages><issn>1742-7835</issn><eissn>1742-7843</eissn><abstract>Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome‐wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen‐specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single‐gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure‐specific base‐change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27754614</pmid><doi>10.1111/bcpt.12690</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7835
ispartof Basic & clinical pharmacology & toxicology, 2017-09, Vol.121 (S3), p.16-22
issn 1742-7835
1742-7843
language eng
recordid cdi_proquest_journals_1939782031
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Animals
Cancer
Carcinogens
Carcinogens - toxicity
Disease Models, Animal
Environmental Exposure - adverse effects
Genes, Reporter - genetics
Genetic Engineering - methods
Genomes
High-Throughput Nucleotide Sequencing
Humans
Models, Genetic
Mutagenicity Tests - methods
Mutagens - toxicity
Mutation
Neoplasms - genetics
p53 Protein
Polycyclic aromatic hydrocarbons
Sequence Analysis, DNA - methods
Structure-function relationships
Tumors
Ultraviolet radiation
title Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Mutation%20Spectra%20of%20Human%20Carcinogens%20Using%20Experimental%20Systems&rft.jtitle=Basic%20&%20clinical%20pharmacology%20&%20toxicology&rft.au=Zhivagui,%20Maria&rft.date=2017-09&rft.volume=121&rft.issue=S3&rft.spage=16&rft.epage=22&rft.pages=16-22&rft.issn=1742-7835&rft.eissn=1742-7843&rft_id=info:doi/10.1111/bcpt.12690&rft_dat=%3Cproquest_cross%3E1939782031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939782031&rft_id=info:pmid/27754614&rfr_iscdi=true