A Parameter Estimation Algorithm for Multiple Frequency-Hopping Signals Based on Sparse Bayesian Method
Parameter estimation and network sorting for noncooperative wideband frequency-hopping (FH) signals have been essential and challenging tasks, especially in the case with little or even no prior information at all. In this paper, we propose a nearly blind estimation approach to estimate signal param...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2017 |
creator | Zhang, Kun-feng Qi, Zisen Guo, Ying |
description | Parameter estimation and network sorting for noncooperative wideband frequency-hopping (FH) signals have been essential and challenging tasks, especially in the case with little or even no prior information at all. In this paper, we propose a nearly blind estimation approach to estimate signal parameters based on sparse Bayesian reconstruction. Taking the sparsity in the spatial frequency domain of multiple FH signals into account, we propose a sparse Bayesian algorithm to estimate the spatial frequency parameters. As a result, the frequency and direction of arrival (DOA) parameters can be obtained. In order to improve the accuracy of the estimation parameters, we employ morphological filter methods to further clean the data poisoned by the noise. Moreover, our method is applicable to the wideband signal models with little prior information. We also conduct extensive numerical simulations to verify the performance of our method. Notably, the proposed method works well even in low signal-to-noise ratio (SNR) environment. |
doi_str_mv | 10.1155/2017/6129120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939714206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939714206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-9cce687521e6bcd7632a827a7e3c60a60cfeabfc87e2d14519c0a1e248aa7b073</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AiCs7pzbMEPGpdXtom7XGOzQkbClPwVrL0tcvompp0yL69GR149JQX3u-Fl38Q3AJ9AkiSEaMgRhxYBoyeBQNIeBQmEItzX1MWh8Cir8vgyrktpQwSSAdBNSbv0soddmjJ1HV6JzttGjKuK2N1t9mR0liy3NedbmskM4vfe2zUIZybttVNRVa6amTtyLN0WBA_uWqldejvB3RaNmSJ3cYU18FF6RnenM5h8Dmbfkzm4eLt5XUyXoQqAtGFmVLIU5EwQL5WheARkykTUmCkOJWcqhLlulSpQFZAnECmqARkcSqlWFMRDYP7_t3WGr-p6_Kt2dvjhjlkUSYgZpR79dgrZY1zFsu8tf7n9pADzY9R5sco81OUnj_0fKObQv7o__Rdr9EbLOWfBt-PafQLLVR9fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939714206</pqid></control><display><type>article</type><title>A Parameter Estimation Algorithm for Multiple Frequency-Hopping Signals Based on Sparse Bayesian Method</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Kun-feng ; Qi, Zisen ; Guo, Ying</creator><contributor>Peng, Zhike</contributor><creatorcontrib>Zhang, Kun-feng ; Qi, Zisen ; Guo, Ying ; Peng, Zhike</creatorcontrib><description>Parameter estimation and network sorting for noncooperative wideband frequency-hopping (FH) signals have been essential and challenging tasks, especially in the case with little or even no prior information at all. In this paper, we propose a nearly blind estimation approach to estimate signal parameters based on sparse Bayesian reconstruction. Taking the sparsity in the spatial frequency domain of multiple FH signals into account, we propose a sparse Bayesian algorithm to estimate the spatial frequency parameters. As a result, the frequency and direction of arrival (DOA) parameters can be obtained. In order to improve the accuracy of the estimation parameters, we employ morphological filter methods to further clean the data poisoned by the noise. Moreover, our method is applicable to the wideband signal models with little prior information. We also conduct extensive numerical simulations to verify the performance of our method. Notably, the proposed method works well even in low signal-to-noise ratio (SNR) environment.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/6129120</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Bayesian analysis ; Broadband ; Computer simulation ; Direction of arrival ; Fourier transforms ; Frequency hopping ; Methods ; Morphology ; Neural networks ; Parameter estimation ; Signal processing ; Sparsity ; Spectrum allocation ; Spread spectrum ; Wireless communications ; Wireless networks</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-9</ispartof><rights>Copyright © 2017 Kun-feng Zhang et al.</rights><rights>Copyright © 2017 Kun-feng Zhang et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-9cce687521e6bcd7632a827a7e3c60a60cfeabfc87e2d14519c0a1e248aa7b073</cites><orcidid>0000-0001-6664-3891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Peng, Zhike</contributor><creatorcontrib>Zhang, Kun-feng</creatorcontrib><creatorcontrib>Qi, Zisen</creatorcontrib><creatorcontrib>Guo, Ying</creatorcontrib><title>A Parameter Estimation Algorithm for Multiple Frequency-Hopping Signals Based on Sparse Bayesian Method</title><title>Mathematical problems in engineering</title><description>Parameter estimation and network sorting for noncooperative wideband frequency-hopping (FH) signals have been essential and challenging tasks, especially in the case with little or even no prior information at all. In this paper, we propose a nearly blind estimation approach to estimate signal parameters based on sparse Bayesian reconstruction. Taking the sparsity in the spatial frequency domain of multiple FH signals into account, we propose a sparse Bayesian algorithm to estimate the spatial frequency parameters. As a result, the frequency and direction of arrival (DOA) parameters can be obtained. In order to improve the accuracy of the estimation parameters, we employ morphological filter methods to further clean the data poisoned by the noise. Moreover, our method is applicable to the wideband signal models with little prior information. We also conduct extensive numerical simulations to verify the performance of our method. Notably, the proposed method works well even in low signal-to-noise ratio (SNR) environment.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Broadband</subject><subject>Computer simulation</subject><subject>Direction of arrival</subject><subject>Fourier transforms</subject><subject>Frequency hopping</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Signal processing</subject><subject>Sparsity</subject><subject>Spectrum allocation</subject><subject>Spread spectrum</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EFLwzAUB_AiCs7pzbMEPGpdXtom7XGOzQkbClPwVrL0tcvompp0yL69GR149JQX3u-Fl38Q3AJ9AkiSEaMgRhxYBoyeBQNIeBQmEItzX1MWh8Cir8vgyrktpQwSSAdBNSbv0soddmjJ1HV6JzttGjKuK2N1t9mR0liy3NedbmskM4vfe2zUIZybttVNRVa6amTtyLN0WBA_uWqldejvB3RaNmSJ3cYU18FF6RnenM5h8Dmbfkzm4eLt5XUyXoQqAtGFmVLIU5EwQL5WheARkykTUmCkOJWcqhLlulSpQFZAnECmqARkcSqlWFMRDYP7_t3WGr-p6_Kt2dvjhjlkUSYgZpR79dgrZY1zFsu8tf7n9pADzY9R5sco81OUnj_0fKObQv7o__Rdr9EbLOWfBt-PafQLLVR9fA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zhang, Kun-feng</creator><creator>Qi, Zisen</creator><creator>Guo, Ying</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6664-3891</orcidid></search><sort><creationdate>20170101</creationdate><title>A Parameter Estimation Algorithm for Multiple Frequency-Hopping Signals Based on Sparse Bayesian Method</title><author>Zhang, Kun-feng ; Qi, Zisen ; Guo, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-9cce687521e6bcd7632a827a7e3c60a60cfeabfc87e2d14519c0a1e248aa7b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Broadband</topic><topic>Computer simulation</topic><topic>Direction of arrival</topic><topic>Fourier transforms</topic><topic>Frequency hopping</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Signal processing</topic><topic>Sparsity</topic><topic>Spectrum allocation</topic><topic>Spread spectrum</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kun-feng</creatorcontrib><creatorcontrib>Qi, Zisen</creatorcontrib><creatorcontrib>Guo, Ying</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kun-feng</au><au>Qi, Zisen</au><au>Guo, Ying</au><au>Peng, Zhike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Parameter Estimation Algorithm for Multiple Frequency-Hopping Signals Based on Sparse Bayesian Method</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Parameter estimation and network sorting for noncooperative wideband frequency-hopping (FH) signals have been essential and challenging tasks, especially in the case with little or even no prior information at all. In this paper, we propose a nearly blind estimation approach to estimate signal parameters based on sparse Bayesian reconstruction. Taking the sparsity in the spatial frequency domain of multiple FH signals into account, we propose a sparse Bayesian algorithm to estimate the spatial frequency parameters. As a result, the frequency and direction of arrival (DOA) parameters can be obtained. In order to improve the accuracy of the estimation parameters, we employ morphological filter methods to further clean the data poisoned by the noise. Moreover, our method is applicable to the wideband signal models with little prior information. We also conduct extensive numerical simulations to verify the performance of our method. Notably, the proposed method works well even in low signal-to-noise ratio (SNR) environment.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/6129120</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6664-3891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-9 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_1939714206 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Bayesian analysis Broadband Computer simulation Direction of arrival Fourier transforms Frequency hopping Methods Morphology Neural networks Parameter estimation Signal processing Sparsity Spectrum allocation Spread spectrum Wireless communications Wireless networks |
title | A Parameter Estimation Algorithm for Multiple Frequency-Hopping Signals Based on Sparse Bayesian Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Parameter%20Estimation%20Algorithm%20for%20Multiple%20Frequency-Hopping%20Signals%20Based%20on%20Sparse%20Bayesian%20Method&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhang,%20Kun-feng&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/6129120&rft_dat=%3Cproquest_cross%3E1939714206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939714206&rft_id=info:pmid/&rfr_iscdi=true |