PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding

To simplify complicated traditional cost estimation flow, this study emphasizes the cost estimation approach for plastic injection products and molds. It is expected designers and R&D specialists can consider the competitiveness of product cost in the early stage of product design to reduce prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2010-05, Vol.58 (4), p.625-637
1. Verfasser: Che, Z.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 637
container_issue 4
container_start_page 625
container_title Computers & industrial engineering
container_volume 58
creator Che, Z.H.
description To simplify complicated traditional cost estimation flow, this study emphasizes the cost estimation approach for plastic injection products and molds. It is expected designers and R&D specialists can consider the competitiveness of product cost in the early stage of product design to reduce product development time and cost resulting from repetitive modification. Therefore, the proposed cost estimation approach combines factor analysis (FA), particle swarm optimization (PSO) and artificial neural network with two back-propagation networks, called FAPSO-TBP. In addition, another artificial neural network estimation approach with a single back-propagation network, called FAPSO-SBP, is also established. To verify the proposed FAPSO-TBP approach, comparisons with the FAPSO-SBP and general back-propagation artificial neural network (GBP) are made. The computational results show the proposed FAPSO-TBP approach is very competitive for the product and mold cost estimation problems of plastic injection molding.
doi_str_mv 10.1016/j.cie.2010.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_193936593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835210000069</els_id><sourcerecordid>2020679181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-9a32d07788f93849c47fa8ee88a72750c4fab16eb5ee53eeb84eb62b230bd18b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG_Be2vSNG2KJ1n8BwsrqOeQpNMl3W5Tk1bx25vdevY0zPB7M28eQteUpJTQ4rZNjYU0I7EnNCUkP0ELKsoqIZyTU7QgrCCJYDw7RxchtCQSvKIL9PX6tkm0ClBjrcwuGbwb1FaN1vVY-dE21ljV4R4mfyzjt_M73DiPI1lPZsSqr_HedTU2LowYwmj3s9w1eOhU7A22fQvmODyQtt9eorNGdQGu_uoSfTw-vK-ek_Xm6WV1v04My_IxqRTLalKWQjQVE3ll8rJRAkAIVWYlJyZvlKYFaA7AGYAWOegi0xkjuqZCsyW6mfdGt59TNCdbN_k-npS0YhUreMUiRGfIeBeCh0YOPj7hfyQl8pCubGVMVx7SlYTKmF3U3M0aiO6_LHgZItIbqK2Pr8ra2X_Uv9KShHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>193936593</pqid></control><display><type>article</type><title>PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding</title><source>Elsevier ScienceDirect Journals</source><creator>Che, Z.H.</creator><creatorcontrib>Che, Z.H.</creatorcontrib><description>To simplify complicated traditional cost estimation flow, this study emphasizes the cost estimation approach for plastic injection products and molds. It is expected designers and R&amp;D specialists can consider the competitiveness of product cost in the early stage of product design to reduce product development time and cost resulting from repetitive modification. Therefore, the proposed cost estimation approach combines factor analysis (FA), particle swarm optimization (PSO) and artificial neural network with two back-propagation networks, called FAPSO-TBP. In addition, another artificial neural network estimation approach with a single back-propagation network, called FAPSO-SBP, is also established. To verify the proposed FAPSO-TBP approach, comparisons with the FAPSO-SBP and general back-propagation artificial neural network (GBP) are made. The computational results show the proposed FAPSO-TBP approach is very competitive for the product and mold cost estimation problems of plastic injection molding.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2010.01.004</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Back propagation ; Back-propagation network ; Comparative analysis ; Cost estimates ; Cost estimation ; Discriminant analysis ; Factor analysis ; Injection molding ; Neural networks ; Optimization ; Particle swarm optimization ; Plastic injection molding ; Product design ; Propagation ; Rapid prototyping ; Studies</subject><ispartof>Computers &amp; industrial engineering, 2010-05, Vol.58 (4), p.625-637</ispartof><rights>2010 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-9a32d07788f93849c47fa8ee88a72750c4fab16eb5ee53eeb84eb62b230bd18b3</citedby><cites>FETCH-LOGICAL-c324t-9a32d07788f93849c47fa8ee88a72750c4fab16eb5ee53eeb84eb62b230bd18b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835210000069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Che, Z.H.</creatorcontrib><title>PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding</title><title>Computers &amp; industrial engineering</title><description>To simplify complicated traditional cost estimation flow, this study emphasizes the cost estimation approach for plastic injection products and molds. It is expected designers and R&amp;D specialists can consider the competitiveness of product cost in the early stage of product design to reduce product development time and cost resulting from repetitive modification. Therefore, the proposed cost estimation approach combines factor analysis (FA), particle swarm optimization (PSO) and artificial neural network with two back-propagation networks, called FAPSO-TBP. In addition, another artificial neural network estimation approach with a single back-propagation network, called FAPSO-SBP, is also established. To verify the proposed FAPSO-TBP approach, comparisons with the FAPSO-SBP and general back-propagation artificial neural network (GBP) are made. The computational results show the proposed FAPSO-TBP approach is very competitive for the product and mold cost estimation problems of plastic injection molding.</description><subject>Back propagation</subject><subject>Back-propagation network</subject><subject>Comparative analysis</subject><subject>Cost estimates</subject><subject>Cost estimation</subject><subject>Discriminant analysis</subject><subject>Factor analysis</subject><subject>Injection molding</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Plastic injection molding</subject><subject>Product design</subject><subject>Propagation</subject><subject>Rapid prototyping</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG_Be2vSNG2KJ1n8BwsrqOeQpNMl3W5Tk1bx25vdevY0zPB7M28eQteUpJTQ4rZNjYU0I7EnNCUkP0ELKsoqIZyTU7QgrCCJYDw7RxchtCQSvKIL9PX6tkm0ClBjrcwuGbwb1FaN1vVY-dE21ljV4R4mfyzjt_M73DiPI1lPZsSqr_HedTU2LowYwmj3s9w1eOhU7A22fQvmODyQtt9eorNGdQGu_uoSfTw-vK-ek_Xm6WV1v04My_IxqRTLalKWQjQVE3ll8rJRAkAIVWYlJyZvlKYFaA7AGYAWOegi0xkjuqZCsyW6mfdGt59TNCdbN_k-npS0YhUreMUiRGfIeBeCh0YOPj7hfyQl8pCubGVMVx7SlYTKmF3U3M0aiO6_LHgZItIbqK2Pr8ra2X_Uv9KShHY</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Che, Z.H.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100501</creationdate><title>PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding</title><author>Che, Z.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-9a32d07788f93849c47fa8ee88a72750c4fab16eb5ee53eeb84eb62b230bd18b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Back propagation</topic><topic>Back-propagation network</topic><topic>Comparative analysis</topic><topic>Cost estimates</topic><topic>Cost estimation</topic><topic>Discriminant analysis</topic><topic>Factor analysis</topic><topic>Injection molding</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Plastic injection molding</topic><topic>Product design</topic><topic>Propagation</topic><topic>Rapid prototyping</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Z.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Z.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>58</volume><issue>4</issue><spage>625</spage><epage>637</epage><pages>625-637</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>To simplify complicated traditional cost estimation flow, this study emphasizes the cost estimation approach for plastic injection products and molds. It is expected designers and R&amp;D specialists can consider the competitiveness of product cost in the early stage of product design to reduce product development time and cost resulting from repetitive modification. Therefore, the proposed cost estimation approach combines factor analysis (FA), particle swarm optimization (PSO) and artificial neural network with two back-propagation networks, called FAPSO-TBP. In addition, another artificial neural network estimation approach with a single back-propagation network, called FAPSO-SBP, is also established. To verify the proposed FAPSO-TBP approach, comparisons with the FAPSO-SBP and general back-propagation artificial neural network (GBP) are made. The computational results show the proposed FAPSO-TBP approach is very competitive for the product and mold cost estimation problems of plastic injection molding.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2010.01.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2010-05, Vol.58 (4), p.625-637
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_journals_193936593
source Elsevier ScienceDirect Journals
subjects Back propagation
Back-propagation network
Comparative analysis
Cost estimates
Cost estimation
Discriminant analysis
Factor analysis
Injection molding
Neural networks
Optimization
Particle swarm optimization
Plastic injection molding
Product design
Propagation
Rapid prototyping
Studies
title PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSO-based%20back-propagation%20artificial%20neural%20network%20for%20product%20and%20mold%20cost%20estimation%20of%20plastic%20injection%20molding&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Che,%20Z.H.&rft.date=2010-05-01&rft.volume=58&rft.issue=4&rft.spage=625&rft.epage=637&rft.pages=625-637&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2010.01.004&rft_dat=%3Cproquest_cross%3E2020679181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=193936593&rft_id=info:pmid/&rft_els_id=S0360835210000069&rfr_iscdi=true