Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

[Display omitted] •Polyelectrolyte coating was used to phase-transfer oleylamine-coated Fe nanoparticles.•The one-step reaction formed biocompatible, water-dispersible Fe nanoparticles.•Fe stability toward oxidation was found to be polyelectrolyte size-dependent.•Beyond a critical polyelectrolyte si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2017-10, Vol.439, p.251-258
Hauptverfasser: McGrath, Andrew J., Dolan, Ciaran, Cheong, Soshan, Herman, David A.J., Naysmith, Briar, Zong, Fangrong, Galvosas, Petrik, Farrand, Kathryn J., Hermans, Ian F., Brimble, Margaret, Williams, David E., Jin, Jianyong, Tilley, Richard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue
container_start_page 251
container_title Journal of magnetism and magnetic materials
container_volume 439
creator McGrath, Andrew J.
Dolan, Ciaran
Cheong, Soshan
Herman, David A.J.
Naysmith, Briar
Zong, Fangrong
Galvosas, Petrik
Farrand, Kathryn J.
Hermans, Ian F.
Brimble, Margaret
Williams, David E.
Jin, Jianyong
Tilley, Richard D.
description [Display omitted] •Polyelectrolyte coating was used to phase-transfer oleylamine-coated Fe nanoparticles.•The one-step reaction formed biocompatible, water-dispersible Fe nanoparticles.•Fe stability toward oxidation was found to be polyelectrolyte size-dependent.•Beyond a critical polyelectrolyte size, high T2 MRI relaxivity was preserved. Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte (“Fe-PolyM3”) assemblies, with good cell viability (>80%) remaining up to 100μgmL−1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.
doi_str_mv 10.1016/j.jmmm.2017.04.026
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_1939232352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030488531730937X</els_id><sourcerecordid>1939232352</sourcerecordid><originalsourceid>FETCH-LOGICAL-e151t-f7ea572b126f6c27286b055b41dffcac60693ebb0a3b913adbe29d648c1ad5c13</originalsourceid><addsrcrecordid>eNotkEtLxDAQgIMouK7-AU8Bz62TpE1b8CKLL1jw4HoOSTpdU9pmTbPK_nuzrKcZZj7m8RFyyyBnwOR9n_fjOOYcWJVDkQOXZ2TB6kpkRSXlOVmAgCKr61Jckqt57gGAFbVcEP0RtXGDiwfqO7rzwwEHtDGkJGJmvY7YUhf8RCc9-Z0O0dkBZ9r5QDc8-0W3_Toio95OmHo04OwTapG6VHPT9ppcdHqY8eY_Lsnn89Nm9Zqt31_eVo_rDFnJYtZVqMuKG8ZlJy2veC0NlKUpWNt1VlsJshFoDGhhGiZ0a5A3rSxqy3RbWiaW5O40dxf89x7nqHq_D1NaqVgjGi64KHmiHk4UplN-HAY1W4fp3NaF9LdqvVMM1FGq6tVRqjpKVVCoJFX8AVt4bpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939232352</pqid></control><display><type>article</type><title>Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging</title><source>Elsevier ScienceDirect Journals</source><creator>McGrath, Andrew J. ; Dolan, Ciaran ; Cheong, Soshan ; Herman, David A.J. ; Naysmith, Briar ; Zong, Fangrong ; Galvosas, Petrik ; Farrand, Kathryn J. ; Hermans, Ian F. ; Brimble, Margaret ; Williams, David E. ; Jin, Jianyong ; Tilley, Richard D.</creator><creatorcontrib>McGrath, Andrew J. ; Dolan, Ciaran ; Cheong, Soshan ; Herman, David A.J. ; Naysmith, Briar ; Zong, Fangrong ; Galvosas, Petrik ; Farrand, Kathryn J. ; Hermans, Ian F. ; Brimble, Margaret ; Williams, David E. ; Jin, Jianyong ; Tilley, Richard D.</creatorcontrib><description>[Display omitted] •Polyelectrolyte coating was used to phase-transfer oleylamine-coated Fe nanoparticles.•The one-step reaction formed biocompatible, water-dispersible Fe nanoparticles.•Fe stability toward oxidation was found to be polyelectrolyte size-dependent.•Beyond a critical polyelectrolyte size, high T2 MRI relaxivity was preserved. Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte (“Fe-PolyM3”) assemblies, with good cell viability (&gt;80%) remaining up to 100μgmL−1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2017.04.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Assemblies ; Coating ; Electrolytes ; Fourier transforms ; Iron ; Iron nanoparticles ; Iron oxides ; Magnetic nanoparticles ; Magnetic properties ; Magnetic resonance imaging ; MRI ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Oxidation ; Photon correlation spectroscopy ; Polyelectrolyte ; Polyelectrolytes ; Protective coatings ; Stability ; Toxicity ; Transmission electron microscopy</subject><ispartof>Journal of magnetism and magnetic materials, 2017-10, Vol.439, p.251-258</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7086-4096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2017.04.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>McGrath, Andrew J.</creatorcontrib><creatorcontrib>Dolan, Ciaran</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Herman, David A.J.</creatorcontrib><creatorcontrib>Naysmith, Briar</creatorcontrib><creatorcontrib>Zong, Fangrong</creatorcontrib><creatorcontrib>Galvosas, Petrik</creatorcontrib><creatorcontrib>Farrand, Kathryn J.</creatorcontrib><creatorcontrib>Hermans, Ian F.</creatorcontrib><creatorcontrib>Brimble, Margaret</creatorcontrib><creatorcontrib>Williams, David E.</creatorcontrib><creatorcontrib>Jin, Jianyong</creatorcontrib><creatorcontrib>Tilley, Richard D.</creatorcontrib><title>Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging</title><title>Journal of magnetism and magnetic materials</title><description>[Display omitted] •Polyelectrolyte coating was used to phase-transfer oleylamine-coated Fe nanoparticles.•The one-step reaction formed biocompatible, water-dispersible Fe nanoparticles.•Fe stability toward oxidation was found to be polyelectrolyte size-dependent.•Beyond a critical polyelectrolyte size, high T2 MRI relaxivity was preserved. Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte (“Fe-PolyM3”) assemblies, with good cell viability (&gt;80%) remaining up to 100μgmL−1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.</description><subject>Assemblies</subject><subject>Coating</subject><subject>Electrolytes</subject><subject>Fourier transforms</subject><subject>Iron</subject><subject>Iron nanoparticles</subject><subject>Iron oxides</subject><subject>Magnetic nanoparticles</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>MRI</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>Photon correlation spectroscopy</subject><subject>Polyelectrolyte</subject><subject>Polyelectrolytes</subject><subject>Protective coatings</subject><subject>Stability</subject><subject>Toxicity</subject><subject>Transmission electron microscopy</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAQgIMouK7-AU8Bz62TpE1b8CKLL1jw4HoOSTpdU9pmTbPK_nuzrKcZZj7m8RFyyyBnwOR9n_fjOOYcWJVDkQOXZ2TB6kpkRSXlOVmAgCKr61Jckqt57gGAFbVcEP0RtXGDiwfqO7rzwwEHtDGkJGJmvY7YUhf8RCc9-Z0O0dkBZ9r5QDc8-0W3_Toio95OmHo04OwTapG6VHPT9ppcdHqY8eY_Lsnn89Nm9Zqt31_eVo_rDFnJYtZVqMuKG8ZlJy2veC0NlKUpWNt1VlsJshFoDGhhGiZ0a5A3rSxqy3RbWiaW5O40dxf89x7nqHq_D1NaqVgjGi64KHmiHk4UplN-HAY1W4fp3NaF9LdqvVMM1FGq6tVRqjpKVVCoJFX8AVt4bpw</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>McGrath, Andrew J.</creator><creator>Dolan, Ciaran</creator><creator>Cheong, Soshan</creator><creator>Herman, David A.J.</creator><creator>Naysmith, Briar</creator><creator>Zong, Fangrong</creator><creator>Galvosas, Petrik</creator><creator>Farrand, Kathryn J.</creator><creator>Hermans, Ian F.</creator><creator>Brimble, Margaret</creator><creator>Williams, David E.</creator><creator>Jin, Jianyong</creator><creator>Tilley, Richard D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7086-4096</orcidid></search><sort><creationdate>20171001</creationdate><title>Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging</title><author>McGrath, Andrew J. ; Dolan, Ciaran ; Cheong, Soshan ; Herman, David A.J. ; Naysmith, Briar ; Zong, Fangrong ; Galvosas, Petrik ; Farrand, Kathryn J. ; Hermans, Ian F. ; Brimble, Margaret ; Williams, David E. ; Jin, Jianyong ; Tilley, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e151t-f7ea572b126f6c27286b055b41dffcac60693ebb0a3b913adbe29d648c1ad5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Assemblies</topic><topic>Coating</topic><topic>Electrolytes</topic><topic>Fourier transforms</topic><topic>Iron</topic><topic>Iron nanoparticles</topic><topic>Iron oxides</topic><topic>Magnetic nanoparticles</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>MRI</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>Photon correlation spectroscopy</topic><topic>Polyelectrolyte</topic><topic>Polyelectrolytes</topic><topic>Protective coatings</topic><topic>Stability</topic><topic>Toxicity</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGrath, Andrew J.</creatorcontrib><creatorcontrib>Dolan, Ciaran</creatorcontrib><creatorcontrib>Cheong, Soshan</creatorcontrib><creatorcontrib>Herman, David A.J.</creatorcontrib><creatorcontrib>Naysmith, Briar</creatorcontrib><creatorcontrib>Zong, Fangrong</creatorcontrib><creatorcontrib>Galvosas, Petrik</creatorcontrib><creatorcontrib>Farrand, Kathryn J.</creatorcontrib><creatorcontrib>Hermans, Ian F.</creatorcontrib><creatorcontrib>Brimble, Margaret</creatorcontrib><creatorcontrib>Williams, David E.</creatorcontrib><creatorcontrib>Jin, Jianyong</creatorcontrib><creatorcontrib>Tilley, Richard D.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGrath, Andrew J.</au><au>Dolan, Ciaran</au><au>Cheong, Soshan</au><au>Herman, David A.J.</au><au>Naysmith, Briar</au><au>Zong, Fangrong</au><au>Galvosas, Petrik</au><au>Farrand, Kathryn J.</au><au>Hermans, Ian F.</au><au>Brimble, Margaret</au><au>Williams, David E.</au><au>Jin, Jianyong</au><au>Tilley, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>439</volume><spage>251</spage><epage>258</epage><pages>251-258</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>[Display omitted] •Polyelectrolyte coating was used to phase-transfer oleylamine-coated Fe nanoparticles.•The one-step reaction formed biocompatible, water-dispersible Fe nanoparticles.•Fe stability toward oxidation was found to be polyelectrolyte size-dependent.•Beyond a critical polyelectrolyte size, high T2 MRI relaxivity was preserved. Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte (“Fe-PolyM3”) assemblies, with good cell viability (&gt;80%) remaining up to 100μgmL−1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2017.04.026</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7086-4096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2017-10, Vol.439, p.251-258
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_1939232352
source Elsevier ScienceDirect Journals
subjects Assemblies
Coating
Electrolytes
Fourier transforms
Iron
Iron nanoparticles
Iron oxides
Magnetic nanoparticles
Magnetic properties
Magnetic resonance imaging
MRI
Nanoparticles
NMR
Nuclear magnetic resonance
Oxidation
Photon correlation spectroscopy
Polyelectrolyte
Polyelectrolytes
Protective coatings
Stability
Toxicity
Transmission electron microscopy
title Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20polyelectrolyte-coated%20iron%20nanoparticles%20for%20T2-weighted%20magnetic%20resonance%20imaging&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=McGrath,%20Andrew%20J.&rft.date=2017-10-01&rft.volume=439&rft.spage=251&rft.epage=258&rft.pages=251-258&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2017.04.026&rft_dat=%3Cproquest_elsev%3E1939232352%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939232352&rft_id=info:pmid/&rft_els_id=S030488531730937X&rfr_iscdi=true