Modified carbon nanotubes/tetraethylenepentamine for CO2 capture
•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost. In this work, a...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2017-10, Vol.206, p.10-18 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | |
container_start_page | 10 |
container_title | Fuel (Guildford) |
container_volume | 206 |
creator | Irani, Maryam Jacobson, Andrew T. Gasem, Khaled A.M. Fan, Maohong |
description | •Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost.
In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures. |
doi_str_mv | 10.1016/j.fuel.2017.05.087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939230620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236117306774</els_id><sourcerecordid>1939230620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Fz-1OkiZtwYOy-AUre9FzaJIJtuymNUmF_fd2Wc-e5vLezPAIuaVQUKBy1Rduwl3BgFYFiALq6owsaF3xvKKCn5MFzFTOuKSX5CrGHgCqWpQL8vA-2M51aDPTBj34zLd-SJPGuEqYQovp67BDjyP61O47j5kbQrbespkf0xTwmly4dhfx5m8uyefz08f6Nd9sX97Wj5vccClSrlkLRtbOtaWTVCO3tTW1tVpXFo1kWLlS19wYITUtNYBoZrEBJ2oOrBF8Se5Oe8cwfE8Yk-qHKfj5pKINbxgHyWCm2IkyYYgxoFNj6PZtOCgK6lhK9epYSh1LKRBqLjVL9ycJ5_9_Ogwqmg69QdsFNEnZoftP_wV4HHJj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939230620</pqid></control><display><type>article</type><title>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</title><source>Elsevier ScienceDirect Journals</source><creator>Irani, Maryam ; Jacobson, Andrew T. ; Gasem, Khaled A.M. ; Fan, Maohong</creator><creatorcontrib>Irani, Maryam ; Jacobson, Andrew T. ; Gasem, Khaled A.M. ; Fan, Maohong</creatorcontrib><description>•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost.
In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2017.05.087</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activation energy ; Adsorption ; Carbon dioxide ; Carbon nanotubes ; Carbon sequestration ; CO2 capture ; Desorption ; Electron microscopy ; Fourier transforms ; Gas mixtures ; Infrared spectroscopy ; Kinetics ; Nanotechnology ; Scanning electron microscopy ; Sorbents ; Sorption ; Thermogravimetric analysis ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Fuel (Guildford), 2017-10, Vol.206, p.10-18</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</citedby><cites>FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236117306774$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Irani, Maryam</creatorcontrib><creatorcontrib>Jacobson, Andrew T.</creatorcontrib><creatorcontrib>Gasem, Khaled A.M.</creatorcontrib><creatorcontrib>Fan, Maohong</creatorcontrib><title>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</title><title>Fuel (Guildford)</title><description>•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost.
In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures.</description><subject>Activation energy</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbon sequestration</subject><subject>CO2 capture</subject><subject>Desorption</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Gas mixtures</subject><subject>Infrared spectroscopy</subject><subject>Kinetics</subject><subject>Nanotechnology</subject><subject>Scanning electron microscopy</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AU8Fz-1OkiZtwYOy-AUre9FzaJIJtuymNUmF_fd2Wc-e5vLezPAIuaVQUKBy1Rduwl3BgFYFiALq6owsaF3xvKKCn5MFzFTOuKSX5CrGHgCqWpQL8vA-2M51aDPTBj34zLd-SJPGuEqYQovp67BDjyP61O47j5kbQrbespkf0xTwmly4dhfx5m8uyefz08f6Nd9sX97Wj5vccClSrlkLRtbOtaWTVCO3tTW1tVpXFo1kWLlS19wYITUtNYBoZrEBJ2oOrBF8Se5Oe8cwfE8Yk-qHKfj5pKINbxgHyWCm2IkyYYgxoFNj6PZtOCgK6lhK9epYSh1LKRBqLjVL9ycJ5_9_Ogwqmg69QdsFNEnZoftP_wV4HHJj</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Irani, Maryam</creator><creator>Jacobson, Andrew T.</creator><creator>Gasem, Khaled A.M.</creator><creator>Fan, Maohong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20171015</creationdate><title>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</title><author>Irani, Maryam ; Jacobson, Andrew T. ; Gasem, Khaled A.M. ; Fan, Maohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbon sequestration</topic><topic>CO2 capture</topic><topic>Desorption</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Gas mixtures</topic><topic>Infrared spectroscopy</topic><topic>Kinetics</topic><topic>Nanotechnology</topic><topic>Scanning electron microscopy</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irani, Maryam</creatorcontrib><creatorcontrib>Jacobson, Andrew T.</creatorcontrib><creatorcontrib>Gasem, Khaled A.M.</creatorcontrib><creatorcontrib>Fan, Maohong</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irani, Maryam</au><au>Jacobson, Andrew T.</au><au>Gasem, Khaled A.M.</au><au>Fan, Maohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</atitle><jtitle>Fuel (Guildford)</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>206</volume><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost.
In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2017.05.087</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2017-10, Vol.206, p.10-18 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_1939230620 |
source | Elsevier ScienceDirect Journals |
subjects | Activation energy Adsorption Carbon dioxide Carbon nanotubes Carbon sequestration CO2 capture Desorption Electron microscopy Fourier transforms Gas mixtures Infrared spectroscopy Kinetics Nanotechnology Scanning electron microscopy Sorbents Sorption Thermogravimetric analysis Transmission electron microscopy X-ray diffraction |
title | Modified carbon nanotubes/tetraethylenepentamine for CO2 capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20carbon%20nanotubes/tetraethylenepentamine%20for%20CO2%20capture&rft.jtitle=Fuel%20(Guildford)&rft.au=Irani,%20Maryam&rft.date=2017-10-15&rft.volume=206&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2017.05.087&rft_dat=%3Cproquest_cross%3E1939230620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939230620&rft_id=info:pmid/&rft_els_id=S0016236117306774&rfr_iscdi=true |