Modified carbon nanotubes/tetraethylenepentamine for CO2 capture

•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost. In this work, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2017-10, Vol.206, p.10-18
Hauptverfasser: Irani, Maryam, Jacobson, Andrew T., Gasem, Khaled A.M., Fan, Maohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 10
container_title Fuel (Guildford)
container_volume 206
creator Irani, Maryam
Jacobson, Andrew T.
Gasem, Khaled A.M.
Fan, Maohong
description •Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost. In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures.
doi_str_mv 10.1016/j.fuel.2017.05.087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939230620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236117306774</els_id><sourcerecordid>1939230620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8Fz-1OkiZtwYOy-AUre9FzaJIJtuymNUmF_fd2Wc-e5vLezPAIuaVQUKBy1Rduwl3BgFYFiALq6owsaF3xvKKCn5MFzFTOuKSX5CrGHgCqWpQL8vA-2M51aDPTBj34zLd-SJPGuEqYQovp67BDjyP61O47j5kbQrbespkf0xTwmly4dhfx5m8uyefz08f6Nd9sX97Wj5vccClSrlkLRtbOtaWTVCO3tTW1tVpXFo1kWLlS19wYITUtNYBoZrEBJ2oOrBF8Se5Oe8cwfE8Yk-qHKfj5pKINbxgHyWCm2IkyYYgxoFNj6PZtOCgK6lhK9epYSh1LKRBqLjVL9ycJ5_9_Ogwqmg69QdsFNEnZoftP_wV4HHJj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939230620</pqid></control><display><type>article</type><title>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</title><source>Elsevier ScienceDirect Journals</source><creator>Irani, Maryam ; Jacobson, Andrew T. ; Gasem, Khaled A.M. ; Fan, Maohong</creator><creatorcontrib>Irani, Maryam ; Jacobson, Andrew T. ; Gasem, Khaled A.M. ; Fan, Maohong</creatorcontrib><description>•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost. In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2017.05.087</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activation energy ; Adsorption ; Carbon dioxide ; Carbon nanotubes ; Carbon sequestration ; CO2 capture ; Desorption ; Electron microscopy ; Fourier transforms ; Gas mixtures ; Infrared spectroscopy ; Kinetics ; Nanotechnology ; Scanning electron microscopy ; Sorbents ; Sorption ; Thermogravimetric analysis ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Fuel (Guildford), 2017-10, Vol.206, p.10-18</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</citedby><cites>FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236117306774$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Irani, Maryam</creatorcontrib><creatorcontrib>Jacobson, Andrew T.</creatorcontrib><creatorcontrib>Gasem, Khaled A.M.</creatorcontrib><creatorcontrib>Fan, Maohong</creatorcontrib><title>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</title><title>Fuel (Guildford)</title><description>•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost. In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures.</description><subject>Activation energy</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbon sequestration</subject><subject>CO2 capture</subject><subject>Desorption</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Gas mixtures</subject><subject>Infrared spectroscopy</subject><subject>Kinetics</subject><subject>Nanotechnology</subject><subject>Scanning electron microscopy</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Thermogravimetric analysis</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AU8Fz-1OkiZtwYOy-AUre9FzaJIJtuymNUmF_fd2Wc-e5vLezPAIuaVQUKBy1Rduwl3BgFYFiALq6owsaF3xvKKCn5MFzFTOuKSX5CrGHgCqWpQL8vA-2M51aDPTBj34zLd-SJPGuEqYQovp67BDjyP61O47j5kbQrbespkf0xTwmly4dhfx5m8uyefz08f6Nd9sX97Wj5vccClSrlkLRtbOtaWTVCO3tTW1tVpXFo1kWLlS19wYITUtNYBoZrEBJ2oOrBF8Se5Oe8cwfE8Yk-qHKfj5pKINbxgHyWCm2IkyYYgxoFNj6PZtOCgK6lhK9epYSh1LKRBqLjVL9ycJ5_9_Ogwqmg69QdsFNEnZoftP_wV4HHJj</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Irani, Maryam</creator><creator>Jacobson, Andrew T.</creator><creator>Gasem, Khaled A.M.</creator><creator>Fan, Maohong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20171015</creationdate><title>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</title><author>Irani, Maryam ; Jacobson, Andrew T. ; Gasem, Khaled A.M. ; Fan, Maohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b2a0c68ffa4f61be3d8dc8ddbb7dec62e7f4b83cc56b14b0059c3690f58302953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbon sequestration</topic><topic>CO2 capture</topic><topic>Desorption</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Gas mixtures</topic><topic>Infrared spectroscopy</topic><topic>Kinetics</topic><topic>Nanotechnology</topic><topic>Scanning electron microscopy</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Thermogravimetric analysis</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irani, Maryam</creatorcontrib><creatorcontrib>Jacobson, Andrew T.</creatorcontrib><creatorcontrib>Gasem, Khaled A.M.</creatorcontrib><creatorcontrib>Fan, Maohong</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irani, Maryam</au><au>Jacobson, Andrew T.</au><au>Gasem, Khaled A.M.</au><au>Fan, Maohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified carbon nanotubes/tetraethylenepentamine for CO2 capture</atitle><jtitle>Fuel (Guildford)</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>206</volume><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Modified carbon nanotubes (MCNTs) were prepared using a KOH reagent.•MCNTs/tetraethylenepentamine was prepared as a CO2 sorbent.•Under optimal conditions, the CO2 sorption capacity reached 5mmol CO2/g.•High CO2 desorption rate of the sorbent can considerably reduce CO2 capture cost. In this work, a CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto modified carbon nanotubes. Modification of carbon nanotubes (CNTs) using a KOH reagent was done to increase the surface area and pore volume of the CNTs. The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 75wt% on modified CNTs (MCNTs), the CO2 sorption capacity reached 5mmol CO2/g-sorbent for 10vol% CO2 in N2 along with 1vol% H2O at 60°C. Kinetic and thermodynamic adsorption studies found activation energies for CO2 adsorption and desorption of MCNTs/TEPA being16.2kJ/mol and 39.9kJ/mol, respectively. The low activation energy for CO2 desorption using MCNTs/TEPA corresponds with a high CO2 desorption rate, resulting in a low CO2 capture cost. Therefore, the MCNTs/TEPA sorbent has potential for application to CO2 capture from gas mixtures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2017.05.087</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2017-10, Vol.206, p.10-18
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_1939230620
source Elsevier ScienceDirect Journals
subjects Activation energy
Adsorption
Carbon dioxide
Carbon nanotubes
Carbon sequestration
CO2 capture
Desorption
Electron microscopy
Fourier transforms
Gas mixtures
Infrared spectroscopy
Kinetics
Nanotechnology
Scanning electron microscopy
Sorbents
Sorption
Thermogravimetric analysis
Transmission electron microscopy
X-ray diffraction
title Modified carbon nanotubes/tetraethylenepentamine for CO2 capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20carbon%20nanotubes/tetraethylenepentamine%20for%20CO2%20capture&rft.jtitle=Fuel%20(Guildford)&rft.au=Irani,%20Maryam&rft.date=2017-10-15&rft.volume=206&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2017.05.087&rft_dat=%3Cproquest_cross%3E1939230620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939230620&rft_id=info:pmid/&rft_els_id=S0016236117306774&rfr_iscdi=true