Inertial thermal convection in a suddenly expanding viscoplastic flow field

•Suddenly expanding, non-isothermal, viscoplastic flows are numerically studied.•Effects of inertia, rheology, and thermo-physical properties are reported.•Impact of yield stress presence on the flow and thermal behavior is significant.•The thermal behavior of recirculating and non-recirculating flo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2017-03, Vol.106, p.829-840
1. Verfasser: Hammad, Khaled J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 840
container_issue
container_start_page 829
container_title International journal of heat and mass transfer
container_volume 106
creator Hammad, Khaled J.
description •Suddenly expanding, non-isothermal, viscoplastic flows are numerically studied.•Effects of inertia, rheology, and thermo-physical properties are reported.•Impact of yield stress presence on the flow and thermal behavior is significant.•The thermal behavior of recirculating and non-recirculating flows is reported. Inertial thermal convection from recirculating and non-recirculating flows of viscoplastic fluids through an axisymmetric 1:5 sudden expansion has been studied. The governing mass and fully-elliptic partial differential equations of motion and energy along with the Bingham constitutive equation were numerically solved to provide accurate predictions of the flow and thermal fields. A parametric study is implemented to study the impact of geometry, inertia, rheology, and thermo-physical properties on the thermal structure of suddenly expanding, non-isothermal, viscoplastic flows. Detailed visualizations of the velocity, viscosity, and temperature fields demonstrate the dramatic impact of yield stress presence on both the flow and thermal behavior. Furthermore, transitioning from a recirculating flow field to a non-recirculating viscoplastic flow field, within the present geometry, dramatically influences the thermal characteristics of the viscoplastic flow field. Recirculating suddenly expanding viscoplastic flows are characterized by two local compressions in the thermal boundary layer, upstream and downstream of the impingement region. However, non-recirculating viscoplastic flows display only one local compression in the thermal boundary layer, immediately downstream of the large, ramp-like, stagnant corner region.
doi_str_mv 10.1016/j.ijheatmasstransfer.2016.10.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939230361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931016305269</els_id><sourcerecordid>1939230361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-407efdffb3bd9a88f50b48f25080c629ebd5bfdefe6a251638daedc53108d6b23</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEuXxHyxx4ZJgx03i3EAVj0IlLnC2HHtNHaVOsN1C_z2Oyo0Lp9FqRrO7H0LXlOSU0Oqmy223Bhk3MoTopQsGfF4kJ9k5oewIzSivm6ygvDlGM0JonTWMklN0FkI3jWRezdDL0oGPVvY4rsFvkqrB7UBFOzhsHZY4bLUG1-8xfI_Saes-8M4GNYy9DNEqbPrhCxsLvb5AJ0b2AS5_9Ry9P9y_LZ6y1evjcnG3yhSrSczmpAajjWlZqxvJuSlJO-emKAknqioaaHXZGg0GKlmUtGJcS9CqTMdzXbUFO0dXh97RD59bCFF0w9a7tFLQhjUFI6yiKXV7SCk_hODBiNHbjfR7QYmYEIpO_EUoJoRTIiFMFc-HCkjf7Gxyg7LgFGjrEyKhB_v_sh_TAIiu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939230361</pqid></control><display><type>article</type><title>Inertial thermal convection in a suddenly expanding viscoplastic flow field</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hammad, Khaled J.</creator><creatorcontrib>Hammad, Khaled J.</creatorcontrib><description>•Suddenly expanding, non-isothermal, viscoplastic flows are numerically studied.•Effects of inertia, rheology, and thermo-physical properties are reported.•Impact of yield stress presence on the flow and thermal behavior is significant.•The thermal behavior of recirculating and non-recirculating flows is reported. Inertial thermal convection from recirculating and non-recirculating flows of viscoplastic fluids through an axisymmetric 1:5 sudden expansion has been studied. The governing mass and fully-elliptic partial differential equations of motion and energy along with the Bingham constitutive equation were numerically solved to provide accurate predictions of the flow and thermal fields. A parametric study is implemented to study the impact of geometry, inertia, rheology, and thermo-physical properties on the thermal structure of suddenly expanding, non-isothermal, viscoplastic flows. Detailed visualizations of the velocity, viscosity, and temperature fields demonstrate the dramatic impact of yield stress presence on both the flow and thermal behavior. Furthermore, transitioning from a recirculating flow field to a non-recirculating viscoplastic flow field, within the present geometry, dramatically influences the thermal characteristics of the viscoplastic flow field. Recirculating suddenly expanding viscoplastic flows are characterized by two local compressions in the thermal boundary layer, upstream and downstream of the impingement region. However, non-recirculating viscoplastic flows display only one local compression in the thermal boundary layer, immediately downstream of the large, ramp-like, stagnant corner region.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2016.10.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>CFD ; Computational fluid dynamics ; Convection ; Equations of motion ; Fluid flow ; Geometry ; Heat transfer ; Impingement ; Non-Newtonian flows ; Partial differential equations ; Physical properties ; Reattaching flows ; Rheological properties ; Rheology ; Separating flows ; Sudden expansion ; Temperature ; Thermal boundary layer ; Thermal convection ; Thermodynamic properties ; Velocity ; Viscoplastic flows ; Viscosity ; Yield stress</subject><ispartof>International journal of heat and mass transfer, 2017-03, Vol.106, p.829-840</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-407efdffb3bd9a88f50b48f25080c629ebd5bfdefe6a251638daedc53108d6b23</citedby><cites>FETCH-LOGICAL-c370t-407efdffb3bd9a88f50b48f25080c629ebd5bfdefe6a251638daedc53108d6b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.10.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hammad, Khaled J.</creatorcontrib><title>Inertial thermal convection in a suddenly expanding viscoplastic flow field</title><title>International journal of heat and mass transfer</title><description>•Suddenly expanding, non-isothermal, viscoplastic flows are numerically studied.•Effects of inertia, rheology, and thermo-physical properties are reported.•Impact of yield stress presence on the flow and thermal behavior is significant.•The thermal behavior of recirculating and non-recirculating flows is reported. Inertial thermal convection from recirculating and non-recirculating flows of viscoplastic fluids through an axisymmetric 1:5 sudden expansion has been studied. The governing mass and fully-elliptic partial differential equations of motion and energy along with the Bingham constitutive equation were numerically solved to provide accurate predictions of the flow and thermal fields. A parametric study is implemented to study the impact of geometry, inertia, rheology, and thermo-physical properties on the thermal structure of suddenly expanding, non-isothermal, viscoplastic flows. Detailed visualizations of the velocity, viscosity, and temperature fields demonstrate the dramatic impact of yield stress presence on both the flow and thermal behavior. Furthermore, transitioning from a recirculating flow field to a non-recirculating viscoplastic flow field, within the present geometry, dramatically influences the thermal characteristics of the viscoplastic flow field. Recirculating suddenly expanding viscoplastic flows are characterized by two local compressions in the thermal boundary layer, upstream and downstream of the impingement region. However, non-recirculating viscoplastic flows display only one local compression in the thermal boundary layer, immediately downstream of the large, ramp-like, stagnant corner region.</description><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Equations of motion</subject><subject>Fluid flow</subject><subject>Geometry</subject><subject>Heat transfer</subject><subject>Impingement</subject><subject>Non-Newtonian flows</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Reattaching flows</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Separating flows</subject><subject>Sudden expansion</subject><subject>Temperature</subject><subject>Thermal boundary layer</subject><subject>Thermal convection</subject><subject>Thermodynamic properties</subject><subject>Velocity</subject><subject>Viscoplastic flows</subject><subject>Viscosity</subject><subject>Yield stress</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEuXxHyxx4ZJgx03i3EAVj0IlLnC2HHtNHaVOsN1C_z2Oyo0Lp9FqRrO7H0LXlOSU0Oqmy223Bhk3MoTopQsGfF4kJ9k5oewIzSivm6ygvDlGM0JonTWMklN0FkI3jWRezdDL0oGPVvY4rsFvkqrB7UBFOzhsHZY4bLUG1-8xfI_Saes-8M4GNYy9DNEqbPrhCxsLvb5AJ0b2AS5_9Ry9P9y_LZ6y1evjcnG3yhSrSczmpAajjWlZqxvJuSlJO-emKAknqioaaHXZGg0GKlmUtGJcS9CqTMdzXbUFO0dXh97RD59bCFF0w9a7tFLQhjUFI6yiKXV7SCk_hODBiNHbjfR7QYmYEIpO_EUoJoRTIiFMFc-HCkjf7Gxyg7LgFGjrEyKhB_v_sh_TAIiu</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Hammad, Khaled J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201703</creationdate><title>Inertial thermal convection in a suddenly expanding viscoplastic flow field</title><author>Hammad, Khaled J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-407efdffb3bd9a88f50b48f25080c629ebd5bfdefe6a251638daedc53108d6b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Equations of motion</topic><topic>Fluid flow</topic><topic>Geometry</topic><topic>Heat transfer</topic><topic>Impingement</topic><topic>Non-Newtonian flows</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Reattaching flows</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Separating flows</topic><topic>Sudden expansion</topic><topic>Temperature</topic><topic>Thermal boundary layer</topic><topic>Thermal convection</topic><topic>Thermodynamic properties</topic><topic>Velocity</topic><topic>Viscoplastic flows</topic><topic>Viscosity</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammad, Khaled J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammad, Khaled J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertial thermal convection in a suddenly expanding viscoplastic flow field</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2017-03</date><risdate>2017</risdate><volume>106</volume><spage>829</spage><epage>840</epage><pages>829-840</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Suddenly expanding, non-isothermal, viscoplastic flows are numerically studied.•Effects of inertia, rheology, and thermo-physical properties are reported.•Impact of yield stress presence on the flow and thermal behavior is significant.•The thermal behavior of recirculating and non-recirculating flows is reported. Inertial thermal convection from recirculating and non-recirculating flows of viscoplastic fluids through an axisymmetric 1:5 sudden expansion has been studied. The governing mass and fully-elliptic partial differential equations of motion and energy along with the Bingham constitutive equation were numerically solved to provide accurate predictions of the flow and thermal fields. A parametric study is implemented to study the impact of geometry, inertia, rheology, and thermo-physical properties on the thermal structure of suddenly expanding, non-isothermal, viscoplastic flows. Detailed visualizations of the velocity, viscosity, and temperature fields demonstrate the dramatic impact of yield stress presence on both the flow and thermal behavior. Furthermore, transitioning from a recirculating flow field to a non-recirculating viscoplastic flow field, within the present geometry, dramatically influences the thermal characteristics of the viscoplastic flow field. Recirculating suddenly expanding viscoplastic flows are characterized by two local compressions in the thermal boundary layer, upstream and downstream of the impingement region. However, non-recirculating viscoplastic flows display only one local compression in the thermal boundary layer, immediately downstream of the large, ramp-like, stagnant corner region.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2016.10.013</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2017-03, Vol.106, p.829-840
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_1939230361
source Access via ScienceDirect (Elsevier)
subjects CFD
Computational fluid dynamics
Convection
Equations of motion
Fluid flow
Geometry
Heat transfer
Impingement
Non-Newtonian flows
Partial differential equations
Physical properties
Reattaching flows
Rheological properties
Rheology
Separating flows
Sudden expansion
Temperature
Thermal boundary layer
Thermal convection
Thermodynamic properties
Velocity
Viscoplastic flows
Viscosity
Yield stress
title Inertial thermal convection in a suddenly expanding viscoplastic flow field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertial%20thermal%20convection%20in%20a%20suddenly%20expanding%20viscoplastic%20flow%20field&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Hammad,%20Khaled%20J.&rft.date=2017-03&rft.volume=106&rft.spage=829&rft.epage=840&rft.pages=829-840&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2016.10.013&rft_dat=%3Cproquest_cross%3E1939230361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939230361&rft_id=info:pmid/&rft_els_id=S0017931016305269&rfr_iscdi=true