High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators

A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2017-10, Vol.12 (5), p.1449-1455
Hauptverfasser: Yan, Xicheng, Wang, Tao, Han, Xu, Xiao, Shuyuan, Zhu, Youjiang, Wang, Yunbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1455
container_issue 5
container_start_page 1449
container_title Plasmonics (Norwell, Mass.)
container_volume 12
creator Yan, Xicheng
Wang, Tao
Han, Xu
Xiao, Shuyuan
Zhu, Youjiang
Wang, Yunbo
description A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.
doi_str_mv 10.1007/s11468-016-0405-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1939018170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939018170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a771858ae6d53b00213eeb16d8f857169807aeae5e6e48b75af491014288726c3</originalsourceid><addsrcrecordid>eNp1kclOwzAQhiMEEusDcLPE2eBpvOUIZSlSBYhFHC0nmbZGxQ52AuoT8ZqkBCEunGb9_tHoz7JDYMfAmDpJAFxqykBSxpmgbCPbASEUhULmm7-5ENvZbkovjHHOJd_JPiduviAP6JNr3btrV-TG-tAsbXoN3lXfkxDJmU1Yk-DJ3TCh177uqr71GK1PjY3oqxVxnlhyFW2zQI_fQtGVZU8923ecd65GMg5ds-y5D9cuyDm2ne-LX-Threul6ED6ObnHFLxtQ0z72dbMLhMe_MS97Ony4nE8odPbq-vx6ZRWOciWWqVAC21R1iIvGRtBjliCrPVMCwWy0ExZtChQItelEnbGC2DAR1qrkazyvexo0G1ieOswteYldNH3Jw0UecFAg2L9FgxbVQwpRZyZJrpXG1cGmFn7YQY_TO-HWfth1sxoYFKz_g3jH-V_oS_h85Ay</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939018170</pqid></control><display><type>article</type><title>High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yan, Xicheng ; Wang, Tao ; Han, Xu ; Xiao, Shuyuan ; Zhu, Youjiang ; Wang, Yunbo</creator><creatorcontrib>Yan, Xicheng ; Wang, Tao ; Han, Xu ; Xiao, Shuyuan ; Zhu, Youjiang ; Wang, Yunbo</creatorcontrib><description>A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-016-0405-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Coupled modes ; Fermi surfaces ; Figure of merit ; Finite difference time domain method ; Graphene ; Infrared radiation ; Nanoribbons ; Nanotechnology ; Refractivity ; Resonators ; Sensitivity</subject><ispartof>Plasmonics (Norwell, Mass.), 2017-10, Vol.12 (5), p.1449-1455</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a771858ae6d53b00213eeb16d8f857169807aeae5e6e48b75af491014288726c3</citedby><cites>FETCH-LOGICAL-c316t-a771858ae6d53b00213eeb16d8f857169807aeae5e6e48b75af491014288726c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-016-0405-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-016-0405-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yan, Xicheng</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Xiao, Shuyuan</creatorcontrib><creatorcontrib>Zhu, Youjiang</creatorcontrib><creatorcontrib>Wang, Yunbo</creatorcontrib><title>High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coupled modes</subject><subject>Fermi surfaces</subject><subject>Figure of merit</subject><subject>Finite difference time domain method</subject><subject>Graphene</subject><subject>Infrared radiation</subject><subject>Nanoribbons</subject><subject>Nanotechnology</subject><subject>Refractivity</subject><subject>Resonators</subject><subject>Sensitivity</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kclOwzAQhiMEEusDcLPE2eBpvOUIZSlSBYhFHC0nmbZGxQ52AuoT8ZqkBCEunGb9_tHoz7JDYMfAmDpJAFxqykBSxpmgbCPbASEUhULmm7-5ENvZbkovjHHOJd_JPiduviAP6JNr3btrV-TG-tAsbXoN3lXfkxDJmU1Yk-DJ3TCh177uqr71GK1PjY3oqxVxnlhyFW2zQI_fQtGVZU8923ecd65GMg5ds-y5D9cuyDm2ne-LX-Threul6ED6ObnHFLxtQ0z72dbMLhMe_MS97Ony4nE8odPbq-vx6ZRWOciWWqVAC21R1iIvGRtBjliCrPVMCwWy0ExZtChQItelEnbGC2DAR1qrkazyvexo0G1ieOswteYldNH3Jw0UecFAg2L9FgxbVQwpRZyZJrpXG1cGmFn7YQY_TO-HWfth1sxoYFKz_g3jH-V_oS_h85Ay</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Yan, Xicheng</creator><creator>Wang, Tao</creator><creator>Han, Xu</creator><creator>Xiao, Shuyuan</creator><creator>Zhu, Youjiang</creator><creator>Wang, Yunbo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171001</creationdate><title>High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators</title><author>Yan, Xicheng ; Wang, Tao ; Han, Xu ; Xiao, Shuyuan ; Zhu, Youjiang ; Wang, Yunbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a771858ae6d53b00213eeb16d8f857169807aeae5e6e48b75af491014288726c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coupled modes</topic><topic>Fermi surfaces</topic><topic>Figure of merit</topic><topic>Finite difference time domain method</topic><topic>Graphene</topic><topic>Infrared radiation</topic><topic>Nanoribbons</topic><topic>Nanotechnology</topic><topic>Refractivity</topic><topic>Resonators</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xicheng</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Han, Xu</creatorcontrib><creatorcontrib>Xiao, Shuyuan</creatorcontrib><creatorcontrib>Zhu, Youjiang</creatorcontrib><creatorcontrib>Wang, Yunbo</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xicheng</au><au>Wang, Tao</au><au>Han, Xu</au><au>Xiao, Shuyuan</au><au>Zhu, Youjiang</au><au>Wang, Yunbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>1449</spage><epage>1455</epage><pages>1449-1455</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-016-0405-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1557-1955
ispartof Plasmonics (Norwell, Mass.), 2017-10, Vol.12 (5), p.1449-1455
issn 1557-1955
1557-1963
language eng
recordid cdi_proquest_journals_1939018170
source SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Chemistry
Chemistry and Materials Science
Coupled modes
Fermi surfaces
Figure of merit
Finite difference time domain method
Graphene
Infrared radiation
Nanoribbons
Nanotechnology
Refractivity
Resonators
Sensitivity
title High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Sensitivity%20Nanoplasmonic%20Sensor%20Based%20on%20Plasmon-Induced%20Transparency%20in%20a%20Graphene%20Nanoribbon%20Waveguide%20Coupled%20with%20Detuned%20Graphene%20Square-Nanoring%20Resonators&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Yan,%20Xicheng&rft.date=2017-10-01&rft.volume=12&rft.issue=5&rft.spage=1449&rft.epage=1455&rft.pages=1449-1455&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-016-0405-0&rft_dat=%3Cproquest_cross%3E1939018170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939018170&rft_id=info:pmid/&rfr_iscdi=true