A smartphone-based activity-aware system for music streaming recommendation

Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2017-09, Vol.131, p.70-82
Hauptverfasser: Lee, Wei-Po, Chen, Chun-Ting, Huang, Jhih-Yuan, Liang, Jhen-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 70
container_title Knowledge-based systems
container_volume 131
creator Lee, Wei-Po
Chen, Chun-Ting
Huang, Jhih-Yuan
Liang, Jhen-Yi
description Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications.
doi_str_mv 10.1016/j.knosys.2017.06.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938871590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705117302757</els_id><sourcerecordid>1938871590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU4Y52lvkKqKl6jEBtaWY4_BgcTFdkH9e1yFNavZ3HtG9xBySaGgQNvrofiYXNiHogTaFdAWAOURWVDWlXlXAz8mC-AN5B009JSchTBASpSULcjTKguj9HH77ibMexlQZ1JF-23jPpc_0mOWwBHHzDifjbtgVRaiRzna6S3zqNw44qRltG46JydGfga8-LtL8np3-7J-yDfP94_r1SZXVVXHHJEx0xvUsu4pcIm81y3vkdZN1SpKa963FdZKo-5MrYDxhvHOMEAsDRhdLcnVzN1697XDEMXgdn5KLwXlFWMdbTikVD2nlHcheDRi622auhcUxEGbGMSsTRy0CWhFkpJqN3MN04Jvi14EZXFSqG1aG4V29n_AL2oQejs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938871590</pqid></control><display><type>article</type><title>A smartphone-based activity-aware system for music streaming recommendation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, Wei-Po ; Chen, Chun-Ting ; Huang, Jhih-Yuan ; Liang, Jhen-Yi</creator><creatorcontrib>Lee, Wei-Po ; Chen, Chun-Ting ; Huang, Jhih-Yuan ; Liang, Jhen-Yi</creatorcontrib><description>Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2017.06.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activity recognition ; Artificial intelligence ; Classification ; Cloud computing ; Context-awareness ; Digital media ; Feature extraction ; Filtration ; Machine learning ; Mobile music recommendation ; Modules ; Music ; Recommender systems ; Smartphone ; Smartphones ; Streaming media</subject><ispartof>Knowledge-based systems, 2017-09, Vol.131, p.70-82</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</citedby><cites>FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2017.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lee, Wei-Po</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Huang, Jhih-Yuan</creatorcontrib><creatorcontrib>Liang, Jhen-Yi</creatorcontrib><title>A smartphone-based activity-aware system for music streaming recommendation</title><title>Knowledge-based systems</title><description>Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications.</description><subject>Activity recognition</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Context-awareness</subject><subject>Digital media</subject><subject>Feature extraction</subject><subject>Filtration</subject><subject>Machine learning</subject><subject>Mobile music recommendation</subject><subject>Modules</subject><subject>Music</subject><subject>Recommender systems</subject><subject>Smartphone</subject><subject>Smartphones</subject><subject>Streaming media</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU4Y52lvkKqKl6jEBtaWY4_BgcTFdkH9e1yFNavZ3HtG9xBySaGgQNvrofiYXNiHogTaFdAWAOURWVDWlXlXAz8mC-AN5B009JSchTBASpSULcjTKguj9HH77ibMexlQZ1JF-23jPpc_0mOWwBHHzDifjbtgVRaiRzna6S3zqNw44qRltG46JydGfga8-LtL8np3-7J-yDfP94_r1SZXVVXHHJEx0xvUsu4pcIm81y3vkdZN1SpKa963FdZKo-5MrYDxhvHOMEAsDRhdLcnVzN1697XDEMXgdn5KLwXlFWMdbTikVD2nlHcheDRi622auhcUxEGbGMSsTRy0CWhFkpJqN3MN04Jvi14EZXFSqG1aG4V29n_AL2oQejs</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lee, Wei-Po</creator><creator>Chen, Chun-Ting</creator><creator>Huang, Jhih-Yuan</creator><creator>Liang, Jhen-Yi</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>A smartphone-based activity-aware system for music streaming recommendation</title><author>Lee, Wei-Po ; Chen, Chun-Ting ; Huang, Jhih-Yuan ; Liang, Jhen-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activity recognition</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Context-awareness</topic><topic>Digital media</topic><topic>Feature extraction</topic><topic>Filtration</topic><topic>Machine learning</topic><topic>Mobile music recommendation</topic><topic>Modules</topic><topic>Music</topic><topic>Recommender systems</topic><topic>Smartphone</topic><topic>Smartphones</topic><topic>Streaming media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Wei-Po</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Huang, Jhih-Yuan</creatorcontrib><creatorcontrib>Liang, Jhen-Yi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Wei-Po</au><au>Chen, Chun-Ting</au><au>Huang, Jhih-Yuan</au><au>Liang, Jhen-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smartphone-based activity-aware system for music streaming recommendation</atitle><jtitle>Knowledge-based systems</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>131</volume><spage>70</spage><epage>82</epage><pages>70-82</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2017.06.002</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2017-09, Vol.131, p.70-82
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_1938871590
source ScienceDirect Journals (5 years ago - present)
subjects Activity recognition
Artificial intelligence
Classification
Cloud computing
Context-awareness
Digital media
Feature extraction
Filtration
Machine learning
Mobile music recommendation
Modules
Music
Recommender systems
Smartphone
Smartphones
Streaming media
title A smartphone-based activity-aware system for music streaming recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smartphone-based%20activity-aware%20system%20for%20music%20streaming%20recommendation&rft.jtitle=Knowledge-based%20systems&rft.au=Lee,%20Wei-Po&rft.date=2017-09-01&rft.volume=131&rft.spage=70&rft.epage=82&rft.pages=70-82&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2017.06.002&rft_dat=%3Cproquest_cross%3E1938871590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938871590&rft_id=info:pmid/&rft_els_id=S0950705117302757&rfr_iscdi=true