A smartphone-based activity-aware system for music streaming recommendation
Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we d...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2017-09, Vol.131, p.70-82 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | |
container_start_page | 70 |
container_title | Knowledge-based systems |
container_volume | 131 |
creator | Lee, Wei-Po Chen, Chun-Ting Huang, Jhih-Yuan Liang, Jhen-Yi |
description | Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications. |
doi_str_mv | 10.1016/j.knosys.2017.06.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938871590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705117302757</els_id><sourcerecordid>1938871590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU4Y52lvkKqKl6jEBtaWY4_BgcTFdkH9e1yFNavZ3HtG9xBySaGgQNvrofiYXNiHogTaFdAWAOURWVDWlXlXAz8mC-AN5B009JSchTBASpSULcjTKguj9HH77ibMexlQZ1JF-23jPpc_0mOWwBHHzDifjbtgVRaiRzna6S3zqNw44qRltG46JydGfga8-LtL8np3-7J-yDfP94_r1SZXVVXHHJEx0xvUsu4pcIm81y3vkdZN1SpKa963FdZKo-5MrYDxhvHOMEAsDRhdLcnVzN1697XDEMXgdn5KLwXlFWMdbTikVD2nlHcheDRi622auhcUxEGbGMSsTRy0CWhFkpJqN3MN04Jvi14EZXFSqG1aG4V29n_AL2oQejs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938871590</pqid></control><display><type>article</type><title>A smartphone-based activity-aware system for music streaming recommendation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, Wei-Po ; Chen, Chun-Ting ; Huang, Jhih-Yuan ; Liang, Jhen-Yi</creator><creatorcontrib>Lee, Wei-Po ; Chen, Chun-Ting ; Huang, Jhih-Yuan ; Liang, Jhen-Yi</creatorcontrib><description>Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2017.06.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activity recognition ; Artificial intelligence ; Classification ; Cloud computing ; Context-awareness ; Digital media ; Feature extraction ; Filtration ; Machine learning ; Mobile music recommendation ; Modules ; Music ; Recommender systems ; Smartphone ; Smartphones ; Streaming media</subject><ispartof>Knowledge-based systems, 2017-09, Vol.131, p.70-82</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</citedby><cites>FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2017.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lee, Wei-Po</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Huang, Jhih-Yuan</creatorcontrib><creatorcontrib>Liang, Jhen-Yi</creatorcontrib><title>A smartphone-based activity-aware system for music streaming recommendation</title><title>Knowledge-based systems</title><description>Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications.</description><subject>Activity recognition</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Cloud computing</subject><subject>Context-awareness</subject><subject>Digital media</subject><subject>Feature extraction</subject><subject>Filtration</subject><subject>Machine learning</subject><subject>Mobile music recommendation</subject><subject>Modules</subject><subject>Music</subject><subject>Recommender systems</subject><subject>Smartphone</subject><subject>Smartphones</subject><subject>Streaming media</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU4Y52lvkKqKl6jEBtaWY4_BgcTFdkH9e1yFNavZ3HtG9xBySaGgQNvrofiYXNiHogTaFdAWAOURWVDWlXlXAz8mC-AN5B009JSchTBASpSULcjTKguj9HH77ibMexlQZ1JF-23jPpc_0mOWwBHHzDifjbtgVRaiRzna6S3zqNw44qRltG46JydGfga8-LtL8np3-7J-yDfP94_r1SZXVVXHHJEx0xvUsu4pcIm81y3vkdZN1SpKa963FdZKo-5MrYDxhvHOMEAsDRhdLcnVzN1697XDEMXgdn5KLwXlFWMdbTikVD2nlHcheDRi622auhcUxEGbGMSsTRy0CWhFkpJqN3MN04Jvi14EZXFSqG1aG4V29n_AL2oQejs</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lee, Wei-Po</creator><creator>Chen, Chun-Ting</creator><creator>Huang, Jhih-Yuan</creator><creator>Liang, Jhen-Yi</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170901</creationdate><title>A smartphone-based activity-aware system for music streaming recommendation</title><author>Lee, Wei-Po ; Chen, Chun-Ting ; Huang, Jhih-Yuan ; Liang, Jhen-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ee88fbfeda4b109ae9bd69be14536c1149b63e4cded7f4c0895897f80ee2f0fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activity recognition</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Cloud computing</topic><topic>Context-awareness</topic><topic>Digital media</topic><topic>Feature extraction</topic><topic>Filtration</topic><topic>Machine learning</topic><topic>Mobile music recommendation</topic><topic>Modules</topic><topic>Music</topic><topic>Recommender systems</topic><topic>Smartphone</topic><topic>Smartphones</topic><topic>Streaming media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Wei-Po</creatorcontrib><creatorcontrib>Chen, Chun-Ting</creatorcontrib><creatorcontrib>Huang, Jhih-Yuan</creatorcontrib><creatorcontrib>Liang, Jhen-Yi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Wei-Po</au><au>Chen, Chun-Ting</au><au>Huang, Jhih-Yuan</au><au>Liang, Jhen-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smartphone-based activity-aware system for music streaming recommendation</atitle><jtitle>Knowledge-based systems</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>131</volume><spage>70</spage><epage>82</epage><pages>70-82</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Contextual information is helpful in building systems that can meet users’ needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2017.06.002</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2017-09, Vol.131, p.70-82 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_1938871590 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Activity recognition Artificial intelligence Classification Cloud computing Context-awareness Digital media Feature extraction Filtration Machine learning Mobile music recommendation Modules Music Recommender systems Smartphone Smartphones Streaming media |
title | A smartphone-based activity-aware system for music streaming recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smartphone-based%20activity-aware%20system%20for%20music%20streaming%20recommendation&rft.jtitle=Knowledge-based%20systems&rft.au=Lee,%20Wei-Po&rft.date=2017-09-01&rft.volume=131&rft.spage=70&rft.epage=82&rft.pages=70-82&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2017.06.002&rft_dat=%3Cproquest_cross%3E1938871590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938871590&rft_id=info:pmid/&rft_els_id=S0950705117302757&rfr_iscdi=true |