Porous Materials Modified with Fe3O4 Nanoparticles for Arsenic Removal in Drinking Water
The contamination of drinking water with arsenic has been a problem in a lot of countries around the world because of its toxicological and carcinogenic effects on human health. Porous materials modified with Fe 3 O 4 nanoparticles (Fe 3 O 4 NPs) represent convenient removers for that contaminant. A...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2017-09, Vol.228 (9), p.1, Article 374 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Water, air, and soil pollution |
container_volume | 228 |
creator | Puente-Urbina, Allen Montero-Campos, Virginia |
description | The contamination of drinking water with arsenic has been a problem in a lot of countries around the world because of its toxicological and carcinogenic effects on human health. Porous materials modified with Fe
3
O
4
nanoparticles (Fe
3
O
4
NPs) represent convenient removers for that contaminant. A co-precipitation method of Fe(III) and Fe(II) in alkaline media was applied to obtain Fe
3
O
4
NPs. In a first stage, single nanoparticles were synthesized and stabilized with carboxylic acids. A characterization with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and X-ray diffraction (XRD) confirms a magnetite-type structure. Moreover, transmission electron microscopy (TEM) and calculations from XRD data using Scherrer’s equation indicate an average particle size of 13 nm and an average crystallite size of 10 nm, both independent of the stabilizer used. Then, the co-precipitation method studied was applied to modify kaolin, bentonite, diatomite, and silica and thus prepare magnetic composites having support-magnetite weight ratios of 2:1. Among them, silica-modified material presented the best hydraulic characteristics, an important aspect for large-scale applications such as removal under gravity. This composite has the capacity to remove up to 80 and 70% for initial concentrations of 25 and 50 μg/L, respectively, representing a convenient remover for processes developed in subsequent stages or in continuous flow. |
doi_str_mv | 10.1007/s11270-017-3513-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938836914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1938836914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e6cde6a68b1653134c07b47a935a71e0d9b53458f6f655f6df7881a225020ca53</originalsourceid><addsrcrecordid>eNp1kMFOAyEQhonRxFp9AG8knlFmWWA5NtWqSbXGaPRG6C5UartU2Gp8e2nWgxfnMnP4_2-SD6FToOdAqbxIAIWkhIIkjAMjbA8NgEtGCsWKfTSgtFREKKkO0VFKS5pHVXKAXh9CDNuE70xnozerfIXGO28b_OW7NzyxbFbie9OGjYmdr1c2YRciHsVkW1_jR7sOn2aFfYsvo2_ffbvALzvWMTpwGWdPfvcQPU-unsY3ZDq7vh2PpqRmIDpiRd1YYUQ1B8EZsLKmcl5Koxg3Eixt1JyzkldOOMG5E42TVQWmKDgtaG04G6KznruJ4WNrU6eXYRvb_FKDYlXFhIIyp6BP1TGkFK3Tm-jXJn5roHonUPcCdRaodwI1y52i76ScbRc2_iH_W_oB2KBx3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938836914</pqid></control><display><type>article</type><title>Porous Materials Modified with Fe3O4 Nanoparticles for Arsenic Removal in Drinking Water</title><source>Springer Nature - Complete Springer Journals</source><creator>Puente-Urbina, Allen ; Montero-Campos, Virginia</creator><creatorcontrib>Puente-Urbina, Allen ; Montero-Campos, Virginia</creatorcontrib><description>The contamination of drinking water with arsenic has been a problem in a lot of countries around the world because of its toxicological and carcinogenic effects on human health. Porous materials modified with Fe
3
O
4
nanoparticles (Fe
3
O
4
NPs) represent convenient removers for that contaminant. A co-precipitation method of Fe(III) and Fe(II) in alkaline media was applied to obtain Fe
3
O
4
NPs. In a first stage, single nanoparticles were synthesized and stabilized with carboxylic acids. A characterization with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and X-ray diffraction (XRD) confirms a magnetite-type structure. Moreover, transmission electron microscopy (TEM) and calculations from XRD data using Scherrer’s equation indicate an average particle size of 13 nm and an average crystallite size of 10 nm, both independent of the stabilizer used. Then, the co-precipitation method studied was applied to modify kaolin, bentonite, diatomite, and silica and thus prepare magnetic composites having support-magnetite weight ratios of 2:1. Among them, silica-modified material presented the best hydraulic characteristics, an important aspect for large-scale applications such as removal under gravity. This composite has the capacity to remove up to 80 and 70% for initial concentrations of 25 and 50 μg/L, respectively, representing a convenient remover for processes developed in subsequent stages or in continuous flow.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-017-3513-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical methods ; Arsenic ; Arsenic removal ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bentonite ; Capacity ; Carboxylic acids ; Carcinogens ; Climate Change/Climate Change Impacts ; Contaminants ; Contamination ; Continuous flow ; Coprecipitation ; Diatomaceous earth ; Diatomites ; Drinking water ; Earth and Environmental Science ; Electron microscopy ; Environment ; Environmental monitoring ; Fourier transforms ; Gravitation ; Gravity ; Health risks ; Hydrogeology ; Infrared spectroscopy ; Iron ; Iron oxides ; Kaolin ; Magnetite ; Mathematical models ; Nanoparticles ; Pollutant removal ; Porous materials ; Raman spectroscopy ; Ratios ; Reflectance ; Removal ; Silica ; Silicon dioxide ; Soil Science & Conservation ; Spectrum analysis ; Transmission electron microscopy ; Water pollution ; Water Quality/Water Pollution ; X-ray diffraction</subject><ispartof>Water, air, and soil pollution, 2017-09, Vol.228 (9), p.1, Article 374</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Water, Air, & Soil Pollution is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e6cde6a68b1653134c07b47a935a71e0d9b53458f6f655f6df7881a225020ca53</citedby><cites>FETCH-LOGICAL-c316t-e6cde6a68b1653134c07b47a935a71e0d9b53458f6f655f6df7881a225020ca53</cites><orcidid>0000-0001-5328-2142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-017-3513-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-017-3513-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Puente-Urbina, Allen</creatorcontrib><creatorcontrib>Montero-Campos, Virginia</creatorcontrib><title>Porous Materials Modified with Fe3O4 Nanoparticles for Arsenic Removal in Drinking Water</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>The contamination of drinking water with arsenic has been a problem in a lot of countries around the world because of its toxicological and carcinogenic effects on human health. Porous materials modified with Fe
3
O
4
nanoparticles (Fe
3
O
4
NPs) represent convenient removers for that contaminant. A co-precipitation method of Fe(III) and Fe(II) in alkaline media was applied to obtain Fe
3
O
4
NPs. In a first stage, single nanoparticles were synthesized and stabilized with carboxylic acids. A characterization with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and X-ray diffraction (XRD) confirms a magnetite-type structure. Moreover, transmission electron microscopy (TEM) and calculations from XRD data using Scherrer’s equation indicate an average particle size of 13 nm and an average crystallite size of 10 nm, both independent of the stabilizer used. Then, the co-precipitation method studied was applied to modify kaolin, bentonite, diatomite, and silica and thus prepare magnetic composites having support-magnetite weight ratios of 2:1. Among them, silica-modified material presented the best hydraulic characteristics, an important aspect for large-scale applications such as removal under gravity. This composite has the capacity to remove up to 80 and 70% for initial concentrations of 25 and 50 μg/L, respectively, representing a convenient remover for processes developed in subsequent stages or in continuous flow.</description><subject>Analytical methods</subject><subject>Arsenic</subject><subject>Arsenic removal</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bentonite</subject><subject>Capacity</subject><subject>Carboxylic acids</subject><subject>Carcinogens</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Contaminants</subject><subject>Contamination</subject><subject>Continuous flow</subject><subject>Coprecipitation</subject><subject>Diatomaceous earth</subject><subject>Diatomites</subject><subject>Drinking water</subject><subject>Earth and Environmental Science</subject><subject>Electron microscopy</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Fourier transforms</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Health risks</subject><subject>Hydrogeology</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Iron oxides</subject><subject>Kaolin</subject><subject>Magnetite</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Pollutant removal</subject><subject>Porous materials</subject><subject>Raman spectroscopy</subject><subject>Ratios</subject><subject>Reflectance</subject><subject>Removal</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Soil Science & Conservation</subject><subject>Spectrum analysis</subject><subject>Transmission electron microscopy</subject><subject>Water pollution</subject><subject>Water Quality/Water Pollution</subject><subject>X-ray diffraction</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFOAyEQhonRxFp9AG8knlFmWWA5NtWqSbXGaPRG6C5UartU2Gp8e2nWgxfnMnP4_2-SD6FToOdAqbxIAIWkhIIkjAMjbA8NgEtGCsWKfTSgtFREKKkO0VFKS5pHVXKAXh9CDNuE70xnozerfIXGO28b_OW7NzyxbFbie9OGjYmdr1c2YRciHsVkW1_jR7sOn2aFfYsvo2_ffbvALzvWMTpwGWdPfvcQPU-unsY3ZDq7vh2PpqRmIDpiRd1YYUQ1B8EZsLKmcl5Koxg3Eixt1JyzkldOOMG5E42TVQWmKDgtaG04G6KznruJ4WNrU6eXYRvb_FKDYlXFhIIyp6BP1TGkFK3Tm-jXJn5roHonUPcCdRaodwI1y52i76ScbRc2_iH_W_oB2KBx3Q</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Puente-Urbina, Allen</creator><creator>Montero-Campos, Virginia</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5328-2142</orcidid></search><sort><creationdate>20170901</creationdate><title>Porous Materials Modified with Fe3O4 Nanoparticles for Arsenic Removal in Drinking Water</title><author>Puente-Urbina, Allen ; Montero-Campos, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e6cde6a68b1653134c07b47a935a71e0d9b53458f6f655f6df7881a225020ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical methods</topic><topic>Arsenic</topic><topic>Arsenic removal</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bentonite</topic><topic>Capacity</topic><topic>Carboxylic acids</topic><topic>Carcinogens</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Contaminants</topic><topic>Contamination</topic><topic>Continuous flow</topic><topic>Coprecipitation</topic><topic>Diatomaceous earth</topic><topic>Diatomites</topic><topic>Drinking water</topic><topic>Earth and Environmental Science</topic><topic>Electron microscopy</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Fourier transforms</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Health risks</topic><topic>Hydrogeology</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Iron oxides</topic><topic>Kaolin</topic><topic>Magnetite</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Pollutant removal</topic><topic>Porous materials</topic><topic>Raman spectroscopy</topic><topic>Ratios</topic><topic>Reflectance</topic><topic>Removal</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Soil Science & Conservation</topic><topic>Spectrum analysis</topic><topic>Transmission electron microscopy</topic><topic>Water pollution</topic><topic>Water Quality/Water Pollution</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puente-Urbina, Allen</creatorcontrib><creatorcontrib>Montero-Campos, Virginia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puente-Urbina, Allen</au><au>Montero-Campos, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Materials Modified with Fe3O4 Nanoparticles for Arsenic Removal in Drinking Water</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>228</volume><issue>9</issue><spage>1</spage><pages>1-</pages><artnum>374</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>The contamination of drinking water with arsenic has been a problem in a lot of countries around the world because of its toxicological and carcinogenic effects on human health. Porous materials modified with Fe
3
O
4
nanoparticles (Fe
3
O
4
NPs) represent convenient removers for that contaminant. A co-precipitation method of Fe(III) and Fe(II) in alkaline media was applied to obtain Fe
3
O
4
NPs. In a first stage, single nanoparticles were synthesized and stabilized with carboxylic acids. A characterization with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and X-ray diffraction (XRD) confirms a magnetite-type structure. Moreover, transmission electron microscopy (TEM) and calculations from XRD data using Scherrer’s equation indicate an average particle size of 13 nm and an average crystallite size of 10 nm, both independent of the stabilizer used. Then, the co-precipitation method studied was applied to modify kaolin, bentonite, diatomite, and silica and thus prepare magnetic composites having support-magnetite weight ratios of 2:1. Among them, silica-modified material presented the best hydraulic characteristics, an important aspect for large-scale applications such as removal under gravity. This composite has the capacity to remove up to 80 and 70% for initial concentrations of 25 and 50 μg/L, respectively, representing a convenient remover for processes developed in subsequent stages or in continuous flow.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-017-3513-3</doi><orcidid>https://orcid.org/0000-0001-5328-2142</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-6979 |
ispartof | Water, air, and soil pollution, 2017-09, Vol.228 (9), p.1, Article 374 |
issn | 0049-6979 1573-2932 |
language | eng |
recordid | cdi_proquest_journals_1938836914 |
source | Springer Nature - Complete Springer Journals |
subjects | Analytical methods Arsenic Arsenic removal Atmospheric Protection/Air Quality Control/Air Pollution Bentonite Capacity Carboxylic acids Carcinogens Climate Change/Climate Change Impacts Contaminants Contamination Continuous flow Coprecipitation Diatomaceous earth Diatomites Drinking water Earth and Environmental Science Electron microscopy Environment Environmental monitoring Fourier transforms Gravitation Gravity Health risks Hydrogeology Infrared spectroscopy Iron Iron oxides Kaolin Magnetite Mathematical models Nanoparticles Pollutant removal Porous materials Raman spectroscopy Ratios Reflectance Removal Silica Silicon dioxide Soil Science & Conservation Spectrum analysis Transmission electron microscopy Water pollution Water Quality/Water Pollution X-ray diffraction |
title | Porous Materials Modified with Fe3O4 Nanoparticles for Arsenic Removal in Drinking Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Materials%20Modified%20with%20Fe3O4%20Nanoparticles%20for%20Arsenic%20Removal%20in%20Drinking%20Water&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Puente-Urbina,%20Allen&rft.date=2017-09-01&rft.volume=228&rft.issue=9&rft.spage=1&rft.pages=1-&rft.artnum=374&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-017-3513-3&rft_dat=%3Cproquest_cross%3E1938836914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938836914&rft_id=info:pmid/&rfr_iscdi=true |