Robust image matching with cascaded outliers removal

Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2017-07, Vol.27 (3), p.480-493
Hauptverfasser: Dou, Jianfang, Qin, Qin, Tu, Zimei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue 3
container_start_page 480
container_title Pattern recognition and image analysis
container_volume 27
creator Dou, Jianfang
Qin, Qin
Tu, Zimei
description Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method.
doi_str_mv 10.1134/S1054661817030099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938623242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1938623242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</originalsourceid><addsrcrecordid>eNp1kEtLA0EQhAdRMEZ_gLcFz6vdPc89SvAFguDjvMzOziQbkmyc2VX8906IB0E8dUN9VU0XY-cIl4hcXL0gSKEUGtTAAarqgE1QSlkqQjrMe5bLnX7MTlJaAoDBiiZMPPfNmIaiW9u5L9Z2cItuMy8-u2FROJucbX1b9OOw6nxMRfTr_sOuTtlRsKvkz37mlL3d3rzO7svHp7uH2fVj6YhjVUpjFddNEFaRFkJBY7gCcq0C6Rwa0XiuUWsDFLRxBlorvahCIEkmSOBTdrHP3cb-ffRpqJf9GDf5ZI0VN4o4CcoU7ikX-5SiD_U25nfiV41Q78qp_5STPbT3pMxu5j7-Sv7X9A3m_mOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938623242</pqid></control><display><type>article</type><title>Robust image matching with cascaded outliers removal</title><source>SpringerNature Journals</source><creator>Dou, Jianfang ; Qin, Qin ; Tu, Zimei</creator><creatorcontrib>Dou, Jianfang ; Qin, Qin ; Tu, Zimei</creatorcontrib><description>Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661817030099</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Computer Science ; Computer vision ; Delaunay triangulation ; Euclidean geometry ; Feature recognition ; Image Processing and Computer Vision ; Matching ; Outliers (statistics) ; Pattern Recognition ; Processing ; Representation ; Target recognition ; Understanding of Images</subject><ispartof>Pattern recognition and image analysis, 2017-07, Vol.27 (3), p.480-493</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Pattern Recognition and Image Analysis is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</citedby><cites>FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661817030099$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661817030099$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dou, Jianfang</creatorcontrib><creatorcontrib>Qin, Qin</creatorcontrib><creatorcontrib>Tu, Zimei</creatorcontrib><title>Robust image matching with cascaded outliers removal</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method.</description><subject>Analysis</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Delaunay triangulation</subject><subject>Euclidean geometry</subject><subject>Feature recognition</subject><subject>Image Processing and Computer Vision</subject><subject>Matching</subject><subject>Outliers (statistics)</subject><subject>Pattern Recognition</subject><subject>Processing</subject><subject>Representation</subject><subject>Target recognition</subject><subject>Understanding of Images</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLA0EQhAdRMEZ_gLcFz6vdPc89SvAFguDjvMzOziQbkmyc2VX8906IB0E8dUN9VU0XY-cIl4hcXL0gSKEUGtTAAarqgE1QSlkqQjrMe5bLnX7MTlJaAoDBiiZMPPfNmIaiW9u5L9Z2cItuMy8-u2FROJucbX1b9OOw6nxMRfTr_sOuTtlRsKvkz37mlL3d3rzO7svHp7uH2fVj6YhjVUpjFddNEFaRFkJBY7gCcq0C6Rwa0XiuUWsDFLRxBlorvahCIEkmSOBTdrHP3cb-ffRpqJf9GDf5ZI0VN4o4CcoU7ikX-5SiD_U25nfiV41Q78qp_5STPbT3pMxu5j7-Sv7X9A3m_mOw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Dou, Jianfang</creator><creator>Qin, Qin</creator><creator>Tu, Zimei</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Robust image matching with cascaded outliers removal</title><author>Dou, Jianfang ; Qin, Qin ; Tu, Zimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Delaunay triangulation</topic><topic>Euclidean geometry</topic><topic>Feature recognition</topic><topic>Image Processing and Computer Vision</topic><topic>Matching</topic><topic>Outliers (statistics)</topic><topic>Pattern Recognition</topic><topic>Processing</topic><topic>Representation</topic><topic>Target recognition</topic><topic>Understanding of Images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Jianfang</creatorcontrib><creatorcontrib>Qin, Qin</creatorcontrib><creatorcontrib>Tu, Zimei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Jianfang</au><au>Qin, Qin</au><au>Tu, Zimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust image matching with cascaded outliers removal</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>27</volume><issue>3</issue><spage>480</spage><epage>493</epage><pages>480-493</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661817030099</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2017-07, Vol.27 (3), p.480-493
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_journals_1938623242
source SpringerNature Journals
subjects Analysis
Computer Science
Computer vision
Delaunay triangulation
Euclidean geometry
Feature recognition
Image Processing and Computer Vision
Matching
Outliers (statistics)
Pattern Recognition
Processing
Representation
Target recognition
Understanding of Images
title Robust image matching with cascaded outliers removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20image%20matching%20with%20cascaded%20outliers%20removal&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Dou,%20Jianfang&rft.date=2017-07-01&rft.volume=27&rft.issue=3&rft.spage=480&rft.epage=493&rft.pages=480-493&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661817030099&rft_dat=%3Cproquest_cross%3E1938623242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938623242&rft_id=info:pmid/&rfr_iscdi=true