Robust image matching with cascaded outliers removal
Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, whi...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2017-07, Vol.27 (3), p.480-493 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 493 |
---|---|
container_issue | 3 |
container_start_page | 480 |
container_title | Pattern recognition and image analysis |
container_volume | 27 |
creator | Dou, Jianfang Qin, Qin Tu, Zimei |
description | Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method. |
doi_str_mv | 10.1134/S1054661817030099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938623242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1938623242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</originalsourceid><addsrcrecordid>eNp1kEtLA0EQhAdRMEZ_gLcFz6vdPc89SvAFguDjvMzOziQbkmyc2VX8906IB0E8dUN9VU0XY-cIl4hcXL0gSKEUGtTAAarqgE1QSlkqQjrMe5bLnX7MTlJaAoDBiiZMPPfNmIaiW9u5L9Z2cItuMy8-u2FROJucbX1b9OOw6nxMRfTr_sOuTtlRsKvkz37mlL3d3rzO7svHp7uH2fVj6YhjVUpjFddNEFaRFkJBY7gCcq0C6Rwa0XiuUWsDFLRxBlorvahCIEkmSOBTdrHP3cb-ffRpqJf9GDf5ZI0VN4o4CcoU7ikX-5SiD_U25nfiV41Q78qp_5STPbT3pMxu5j7-Sv7X9A3m_mOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938623242</pqid></control><display><type>article</type><title>Robust image matching with cascaded outliers removal</title><source>SpringerNature Journals</source><creator>Dou, Jianfang ; Qin, Qin ; Tu, Zimei</creator><creatorcontrib>Dou, Jianfang ; Qin, Qin ; Tu, Zimei</creatorcontrib><description>Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661817030099</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Computer Science ; Computer vision ; Delaunay triangulation ; Euclidean geometry ; Feature recognition ; Image Processing and Computer Vision ; Matching ; Outliers (statistics) ; Pattern Recognition ; Processing ; Representation ; Target recognition ; Understanding of Images</subject><ispartof>Pattern recognition and image analysis, 2017-07, Vol.27 (3), p.480-493</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Pattern Recognition and Image Analysis is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</citedby><cites>FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661817030099$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661817030099$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dou, Jianfang</creatorcontrib><creatorcontrib>Qin, Qin</creatorcontrib><creatorcontrib>Tu, Zimei</creatorcontrib><title>Robust image matching with cascaded outliers removal</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method.</description><subject>Analysis</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Delaunay triangulation</subject><subject>Euclidean geometry</subject><subject>Feature recognition</subject><subject>Image Processing and Computer Vision</subject><subject>Matching</subject><subject>Outliers (statistics)</subject><subject>Pattern Recognition</subject><subject>Processing</subject><subject>Representation</subject><subject>Target recognition</subject><subject>Understanding of Images</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLA0EQhAdRMEZ_gLcFz6vdPc89SvAFguDjvMzOziQbkmyc2VX8906IB0E8dUN9VU0XY-cIl4hcXL0gSKEUGtTAAarqgE1QSlkqQjrMe5bLnX7MTlJaAoDBiiZMPPfNmIaiW9u5L9Z2cItuMy8-u2FROJucbX1b9OOw6nxMRfTr_sOuTtlRsKvkz37mlL3d3rzO7svHp7uH2fVj6YhjVUpjFddNEFaRFkJBY7gCcq0C6Rwa0XiuUWsDFLRxBlorvahCIEkmSOBTdrHP3cb-ffRpqJf9GDf5ZI0VN4o4CcoU7ikX-5SiD_U25nfiV41Q78qp_5STPbT3pMxu5j7-Sv7X9A3m_mOw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Dou, Jianfang</creator><creator>Qin, Qin</creator><creator>Tu, Zimei</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Robust image matching with cascaded outliers removal</title><author>Dou, Jianfang ; Qin, Qin ; Tu, Zimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-58a637bf4a6274460b83602cd605cc184be37177802f78c80da5e49ff2528f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Delaunay triangulation</topic><topic>Euclidean geometry</topic><topic>Feature recognition</topic><topic>Image Processing and Computer Vision</topic><topic>Matching</topic><topic>Outliers (statistics)</topic><topic>Pattern Recognition</topic><topic>Processing</topic><topic>Representation</topic><topic>Target recognition</topic><topic>Understanding of Images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Jianfang</creatorcontrib><creatorcontrib>Qin, Qin</creatorcontrib><creatorcontrib>Tu, Zimei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Jianfang</au><au>Qin, Qin</au><au>Tu, Zimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust image matching with cascaded outliers removal</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>27</volume><issue>3</issue><spage>480</spage><epage>493</epage><pages>480-493</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>Finding feature correspondences between a pair of images is a fundamental problem in computer vision for 3D reconstruction and target recognition. In practice, for feature based matching methods, there is often having a higher percentage of incorrect matches and decreasing the matching accuracy, which is not suitable for subsequent processing. In this paper, we develop a novel algorithm to find good and more correspondences. Firstly, detecting SURF keypoints and extracting SURF descriptors; Then Obtain the initial matches based on the Euclidean distance of SURF descriptors; Thirdly, remove false matches by sparse representation theory, at the same time, exploiting the information of SURF keypoints, such as scale and orientation, forming the geometrical constraints to further delete incorrect matches; Finally, adopt Delaunay triangulation to refine the matches and get the final matches. Experimental results on real-world image matching datasets demonstrate the effectiveness and robustness of our proposed method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661817030099</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2017-07, Vol.27 (3), p.480-493 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_journals_1938623242 |
source | SpringerNature Journals |
subjects | Analysis Computer Science Computer vision Delaunay triangulation Euclidean geometry Feature recognition Image Processing and Computer Vision Matching Outliers (statistics) Pattern Recognition Processing Representation Target recognition Understanding of Images |
title | Robust image matching with cascaded outliers removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20image%20matching%20with%20cascaded%20outliers%20removal&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Dou,%20Jianfang&rft.date=2017-07-01&rft.volume=27&rft.issue=3&rft.spage=480&rft.epage=493&rft.pages=480-493&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661817030099&rft_dat=%3Cproquest_cross%3E1938623242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938623242&rft_id=info:pmid/&rfr_iscdi=true |