Intelligent Nanofiber Composites: Dynamic Communication between Materials and Their Environment
Intelligence of living and nonliving systems is often characterized by the ability to communicate through signal and response. In the polymer science community, this intelligence is realized through the reaction of a material construct to environmental triggers. These smart materials are modeled aft...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2017-09, Vol.302 (9), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Macromolecular materials and engineering |
container_volume | 302 |
creator | Alexander, Symone L. M. Matolyak, Lindsay E. Korley, LaShanda T. J. |
description | Intelligence of living and nonliving systems is often characterized by the ability to communicate through signal and response. In the polymer science community, this intelligence is realized through the reaction of a material construct to environmental triggers. These smart materials are modeled after natural materials, which utilize matrix–fiber architectures to detect stimuli, release small molecules, or alter their macroscopic morphology in response to stimuli. As such, researchers have designed matrix–fiber composites, which function as release vehicles, sensors or switches, and actuators. Through the examination of the architecture and environmental triggering of these natural muses, the fundamental design parameters necessary for functional response in matrix–fiber composites and the ability to utilize these composites in targeted applications are highlighted. Opportunities for innovation in composite design are also discussed.
Intelligent matrix–fiber composites take advantage of hierarchical structures to interact with their environment. In nature, stimuli‐responsive behavior is demonstrated by living systems like the human extracellular matrix, the Dynastes Hercules beetle, and Pinus seed pods. Utilizing these examples as inspiration, scientists are able to design a variety of composite platforms that act as release vehicles, sensors or switches, and actuators. |
doi_str_mv | 10.1002/mame.201700133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938220752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1938220752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3803-fa5c6d566028d5cd9dd7d90fed87309a83054a50a99ffb9ad8ce98eed8fb8f543</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMltiTnHspLHZqlKgUgtLmS0nPoOrxC52StV_j0sRjEx3uve9O91D6Dono5wQetupDkaU5BUhOWMnaJAXTGSUlMXpd8-zqhD0HF3EuE5IxQUbIDl3PbStfQPX42flvLE1BDz13cZH20O8w_d7pzrbHGbd1tlG9dY7XEO_A3B4qXoIVrURK6fx6h1swDP3aYN3Xdp5ic5MEuHqpw7R68NsNX3KFi-P8-lkkTWME5YZVTZjXY7HhHJdNlpoXWlBDGheMSIUZ-kNVRIlhDG1UJo3IDgk2dTclAUbopvj3k3wH1uIvVz7bXDppMwF45SSqqSJGh2pJvgYAxi5CbZTYS9zIg8hykOI8jfEZBBHw862sP-HlsvJcvbn_QLj3Hfz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938220752</pqid></control><display><type>article</type><title>Intelligent Nanofiber Composites: Dynamic Communication between Materials and Their Environment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Alexander, Symone L. M. ; Matolyak, Lindsay E. ; Korley, LaShanda T. J.</creator><creatorcontrib>Alexander, Symone L. M. ; Matolyak, Lindsay E. ; Korley, LaShanda T. J.</creatorcontrib><description>Intelligence of living and nonliving systems is often characterized by the ability to communicate through signal and response. In the polymer science community, this intelligence is realized through the reaction of a material construct to environmental triggers. These smart materials are modeled after natural materials, which utilize matrix–fiber architectures to detect stimuli, release small molecules, or alter their macroscopic morphology in response to stimuli. As such, researchers have designed matrix–fiber composites, which function as release vehicles, sensors or switches, and actuators. Through the examination of the architecture and environmental triggering of these natural muses, the fundamental design parameters necessary for functional response in matrix–fiber composites and the ability to utilize these composites in targeted applications are highlighted. Opportunities for innovation in composite design are also discussed.
Intelligent matrix–fiber composites take advantage of hierarchical structures to interact with their environment. In nature, stimuli‐responsive behavior is demonstrated by living systems like the human extracellular matrix, the Dynastes Hercules beetle, and Pinus seed pods. Utilizing these examples as inspiration, scientists are able to design a variety of composite platforms that act as release vehicles, sensors or switches, and actuators.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201700133</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>cellulose nanocrystals ; composites ; Construction materials ; Design parameters ; electrospinning ; Fiber composites ; Innovations ; Intelligence ; Nanofibers ; Smart materials ; Stimuli ; stimuli responsive ; Switches</subject><ispartof>Macromolecular materials and engineering, 2017-09, Vol.302 (9), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3803-fa5c6d566028d5cd9dd7d90fed87309a83054a50a99ffb9ad8ce98eed8fb8f543</citedby><cites>FETCH-LOGICAL-c3803-fa5c6d566028d5cd9dd7d90fed87309a83054a50a99ffb9ad8ce98eed8fb8f543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201700133$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201700133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Alexander, Symone L. M.</creatorcontrib><creatorcontrib>Matolyak, Lindsay E.</creatorcontrib><creatorcontrib>Korley, LaShanda T. J.</creatorcontrib><title>Intelligent Nanofiber Composites: Dynamic Communication between Materials and Their Environment</title><title>Macromolecular materials and engineering</title><description>Intelligence of living and nonliving systems is often characterized by the ability to communicate through signal and response. In the polymer science community, this intelligence is realized through the reaction of a material construct to environmental triggers. These smart materials are modeled after natural materials, which utilize matrix–fiber architectures to detect stimuli, release small molecules, or alter their macroscopic morphology in response to stimuli. As such, researchers have designed matrix–fiber composites, which function as release vehicles, sensors or switches, and actuators. Through the examination of the architecture and environmental triggering of these natural muses, the fundamental design parameters necessary for functional response in matrix–fiber composites and the ability to utilize these composites in targeted applications are highlighted. Opportunities for innovation in composite design are also discussed.
Intelligent matrix–fiber composites take advantage of hierarchical structures to interact with their environment. In nature, stimuli‐responsive behavior is demonstrated by living systems like the human extracellular matrix, the Dynastes Hercules beetle, and Pinus seed pods. Utilizing these examples as inspiration, scientists are able to design a variety of composite platforms that act as release vehicles, sensors or switches, and actuators.</description><subject>cellulose nanocrystals</subject><subject>composites</subject><subject>Construction materials</subject><subject>Design parameters</subject><subject>electrospinning</subject><subject>Fiber composites</subject><subject>Innovations</subject><subject>Intelligence</subject><subject>Nanofibers</subject><subject>Smart materials</subject><subject>Stimuli</subject><subject>stimuli responsive</subject><subject>Switches</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMltiTnHspLHZqlKgUgtLmS0nPoOrxC52StV_j0sRjEx3uve9O91D6Dono5wQetupDkaU5BUhOWMnaJAXTGSUlMXpd8-zqhD0HF3EuE5IxQUbIDl3PbStfQPX42flvLE1BDz13cZH20O8w_d7pzrbHGbd1tlG9dY7XEO_A3B4qXoIVrURK6fx6h1swDP3aYN3Xdp5ic5MEuHqpw7R68NsNX3KFi-P8-lkkTWME5YZVTZjXY7HhHJdNlpoXWlBDGheMSIUZ-kNVRIlhDG1UJo3IDgk2dTclAUbopvj3k3wH1uIvVz7bXDppMwF45SSqqSJGh2pJvgYAxi5CbZTYS9zIg8hykOI8jfEZBBHw862sP-HlsvJcvbn_QLj3Hfz</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Alexander, Symone L. M.</creator><creator>Matolyak, Lindsay E.</creator><creator>Korley, LaShanda T. J.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201709</creationdate><title>Intelligent Nanofiber Composites: Dynamic Communication between Materials and Their Environment</title><author>Alexander, Symone L. M. ; Matolyak, Lindsay E. ; Korley, LaShanda T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3803-fa5c6d566028d5cd9dd7d90fed87309a83054a50a99ffb9ad8ce98eed8fb8f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cellulose nanocrystals</topic><topic>composites</topic><topic>Construction materials</topic><topic>Design parameters</topic><topic>electrospinning</topic><topic>Fiber composites</topic><topic>Innovations</topic><topic>Intelligence</topic><topic>Nanofibers</topic><topic>Smart materials</topic><topic>Stimuli</topic><topic>stimuli responsive</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Symone L. M.</creatorcontrib><creatorcontrib>Matolyak, Lindsay E.</creatorcontrib><creatorcontrib>Korley, LaShanda T. J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Symone L. M.</au><au>Matolyak, Lindsay E.</au><au>Korley, LaShanda T. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Nanofiber Composites: Dynamic Communication between Materials and Their Environment</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2017-09</date><risdate>2017</risdate><volume>302</volume><issue>9</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Intelligence of living and nonliving systems is often characterized by the ability to communicate through signal and response. In the polymer science community, this intelligence is realized through the reaction of a material construct to environmental triggers. These smart materials are modeled after natural materials, which utilize matrix–fiber architectures to detect stimuli, release small molecules, or alter their macroscopic morphology in response to stimuli. As such, researchers have designed matrix–fiber composites, which function as release vehicles, sensors or switches, and actuators. Through the examination of the architecture and environmental triggering of these natural muses, the fundamental design parameters necessary for functional response in matrix–fiber composites and the ability to utilize these composites in targeted applications are highlighted. Opportunities for innovation in composite design are also discussed.
Intelligent matrix–fiber composites take advantage of hierarchical structures to interact with their environment. In nature, stimuli‐responsive behavior is demonstrated by living systems like the human extracellular matrix, the Dynastes Hercules beetle, and Pinus seed pods. Utilizing these examples as inspiration, scientists are able to design a variety of composite platforms that act as release vehicles, sensors or switches, and actuators.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mame.201700133</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-7492 |
ispartof | Macromolecular materials and engineering, 2017-09, Vol.302 (9), p.n/a |
issn | 1438-7492 1439-2054 |
language | eng |
recordid | cdi_proquest_journals_1938220752 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cellulose nanocrystals composites Construction materials Design parameters electrospinning Fiber composites Innovations Intelligence Nanofibers Smart materials Stimuli stimuli responsive Switches |
title | Intelligent Nanofiber Composites: Dynamic Communication between Materials and Their Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Nanofiber%20Composites:%20Dynamic%20Communication%20between%20Materials%20and%20Their%20Environment&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Alexander,%20Symone%20L.%20M.&rft.date=2017-09&rft.volume=302&rft.issue=9&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201700133&rft_dat=%3Cproquest_cross%3E1938220752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938220752&rft_id=info:pmid/&rfr_iscdi=true |