Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack

The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International applied mechanics 2017-05, Vol.53 (3), p.305-312
Hauptverfasser: Kirilyuk, V. S., Levchuk, O. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 3
container_start_page 305
container_title International applied mechanics
container_volume 53
creator Kirilyuk, V. S.
Levchuk, O. I.
description The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically
doi_str_mv 10.1007/s10778-017-0812-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1938181101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513642221</galeid><sourcerecordid>A513642221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</originalsourceid><addsrcrecordid>eNp1kF9PwyAUxRujiXP6AXxr4jN6bzsKfVyW-SeZmcn0mVAKG7NrK7AY_fTS1AdfDA_A5Xcu95wkuUa4RQB25xEY4wSQEeCYEX6STJCynHDKs9N4hiInDEp6nlx4vweAkrFykqw2wWnv002QQaedSWWbrl3YdcF1vVXpi9XfnW60Ci7eniPkrGzSTxt2A7psGtuH-LJwUr1fJmdGNl5f_e7T5O1--bp4JKv1w9NiviIqpzQQKVXBs0pDPuOa50UVHYCqNENDKyio5DXlxpSlZLKKYB35aA4Qa1ZmCPk0uRn79q77OGofxL47ujZ-KbDMOXJEwEjdjtRWNlrY1kRPUsVV64NVXauNjfU5xbyYZVk2CHAUKNd577QRvbMH6b4EghhSFmPKIqYshpQFj5ps1PjItlvt_ozyr-gH3h5-Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938181101</pqid></control><display><type>article</type><title>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</title><source>SpringerLink (Online service)</source><creator>Kirilyuk, V. S. ; Levchuk, O. I.</creator><creatorcontrib>Kirilyuk, V. S. ; Levchuk, O. I.</creatorcontrib><description>The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1007/s10778-017-0812-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Computing time ; Fourier transforms ; Green's functions ; Isotropy ; Physics ; Physics and Astronomy ; Piezoelectricity ; Stress concentration ; Stress intensity factors ; Stress state</subject><ispartof>International applied mechanics, 2017-05, Vol.53 (3), p.305-312</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</citedby><cites>FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10778-017-0812-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10778-017-0812-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kirilyuk, V. S.</creatorcontrib><creatorcontrib>Levchuk, O. I.</creatorcontrib><title>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</title><title>International applied mechanics</title><addtitle>Int Appl Mech</addtitle><description>The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Computing time</subject><subject>Fourier transforms</subject><subject>Green's functions</subject><subject>Isotropy</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectricity</subject><subject>Stress concentration</subject><subject>Stress intensity factors</subject><subject>Stress state</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kF9PwyAUxRujiXP6AXxr4jN6bzsKfVyW-SeZmcn0mVAKG7NrK7AY_fTS1AdfDA_A5Xcu95wkuUa4RQB25xEY4wSQEeCYEX6STJCynHDKs9N4hiInDEp6nlx4vweAkrFykqw2wWnv002QQaedSWWbrl3YdcF1vVXpi9XfnW60Ci7eniPkrGzSTxt2A7psGtuH-LJwUr1fJmdGNl5f_e7T5O1--bp4JKv1w9NiviIqpzQQKVXBs0pDPuOa50UVHYCqNENDKyio5DXlxpSlZLKKYB35aA4Qa1ZmCPk0uRn79q77OGofxL47ujZ-KbDMOXJEwEjdjtRWNlrY1kRPUsVV64NVXauNjfU5xbyYZVk2CHAUKNd577QRvbMH6b4EghhSFmPKIqYshpQFj5ps1PjItlvt_ozyr-gH3h5-Vw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Kirilyuk, V. S.</creator><creator>Levchuk, O. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</title><author>Kirilyuk, V. S. ; Levchuk, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Computing time</topic><topic>Fourier transforms</topic><topic>Green's functions</topic><topic>Isotropy</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectricity</topic><topic>Stress concentration</topic><topic>Stress intensity factors</topic><topic>Stress state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirilyuk, V. S.</creatorcontrib><creatorcontrib>Levchuk, O. I.</creatorcontrib><collection>CrossRef</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirilyuk, V. S.</au><au>Levchuk, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</atitle><jtitle>International applied mechanics</jtitle><stitle>Int Appl Mech</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>305</spage><epage>312</epage><pages>305-312</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><abstract>The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10778-017-0812-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7095
ispartof International applied mechanics, 2017-05, Vol.53 (3), p.305-312
issn 1063-7095
1573-8582
language eng
recordid cdi_proquest_journals_1938181101
source SpringerLink (Online service)
subjects Applications of Mathematics
Classical Mechanics
Computing time
Fourier transforms
Green's functions
Isotropy
Physics
Physics and Astronomy
Piezoelectricity
Stress concentration
Stress intensity factors
Stress state
title Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20State%20of%20an%20Orthotropic%20Piezoelectric%20Material%20with%20an%20Elliptic%20Crack&rft.jtitle=International%20applied%20mechanics&rft.au=Kirilyuk,%20V.%20S.&rft.date=2017-05-01&rft.volume=53&rft.issue=3&rft.spage=305&rft.epage=312&rft.pages=305-312&rft.issn=1063-7095&rft.eissn=1573-8582&rft_id=info:doi/10.1007/s10778-017-0812-8&rft_dat=%3Cgale_proqu%3EA513642221%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938181101&rft_id=info:pmid/&rft_galeid=A513642221&rfr_iscdi=true