Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack
The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used....
Gespeichert in:
Veröffentlicht in: | International applied mechanics 2017-05, Vol.53 (3), p.305-312 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 3 |
container_start_page | 305 |
container_title | International applied mechanics |
container_volume | 53 |
creator | Kirilyuk, V. S. Levchuk, O. I. |
description | The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically |
doi_str_mv | 10.1007/s10778-017-0812-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1938181101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513642221</galeid><sourcerecordid>A513642221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</originalsourceid><addsrcrecordid>eNp1kF9PwyAUxRujiXP6AXxr4jN6bzsKfVyW-SeZmcn0mVAKG7NrK7AY_fTS1AdfDA_A5Xcu95wkuUa4RQB25xEY4wSQEeCYEX6STJCynHDKs9N4hiInDEp6nlx4vweAkrFykqw2wWnv002QQaedSWWbrl3YdcF1vVXpi9XfnW60Ci7eniPkrGzSTxt2A7psGtuH-LJwUr1fJmdGNl5f_e7T5O1--bp4JKv1w9NiviIqpzQQKVXBs0pDPuOa50UVHYCqNENDKyio5DXlxpSlZLKKYB35aA4Qa1ZmCPk0uRn79q77OGofxL47ujZ-KbDMOXJEwEjdjtRWNlrY1kRPUsVV64NVXauNjfU5xbyYZVk2CHAUKNd577QRvbMH6b4EghhSFmPKIqYshpQFj5ps1PjItlvt_ozyr-gH3h5-Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938181101</pqid></control><display><type>article</type><title>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</title><source>SpringerLink (Online service)</source><creator>Kirilyuk, V. S. ; Levchuk, O. I.</creator><creatorcontrib>Kirilyuk, V. S. ; Levchuk, O. I.</creatorcontrib><description>The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1007/s10778-017-0812-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Computing time ; Fourier transforms ; Green's functions ; Isotropy ; Physics ; Physics and Astronomy ; Piezoelectricity ; Stress concentration ; Stress intensity factors ; Stress state</subject><ispartof>International applied mechanics, 2017-05, Vol.53 (3), p.305-312</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</citedby><cites>FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10778-017-0812-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10778-017-0812-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kirilyuk, V. S.</creatorcontrib><creatorcontrib>Levchuk, O. I.</creatorcontrib><title>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</title><title>International applied mechanics</title><addtitle>Int Appl Mech</addtitle><description>The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Computing time</subject><subject>Fourier transforms</subject><subject>Green's functions</subject><subject>Isotropy</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectricity</subject><subject>Stress concentration</subject><subject>Stress intensity factors</subject><subject>Stress state</subject><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kF9PwyAUxRujiXP6AXxr4jN6bzsKfVyW-SeZmcn0mVAKG7NrK7AY_fTS1AdfDA_A5Xcu95wkuUa4RQB25xEY4wSQEeCYEX6STJCynHDKs9N4hiInDEp6nlx4vweAkrFykqw2wWnv002QQaedSWWbrl3YdcF1vVXpi9XfnW60Ci7eniPkrGzSTxt2A7psGtuH-LJwUr1fJmdGNl5f_e7T5O1--bp4JKv1w9NiviIqpzQQKVXBs0pDPuOa50UVHYCqNENDKyio5DXlxpSlZLKKYB35aA4Qa1ZmCPk0uRn79q77OGofxL47ujZ-KbDMOXJEwEjdjtRWNlrY1kRPUsVV64NVXauNjfU5xbyYZVk2CHAUKNd577QRvbMH6b4EghhSFmPKIqYshpQFj5ps1PjItlvt_ozyr-gH3h5-Vw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Kirilyuk, V. S.</creator><creator>Levchuk, O. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</title><author>Kirilyuk, V. S. ; Levchuk, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-aac682be0348e836b1000cbe71f5b065a8d58ff99a7ab82bdac6778011d792103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Computing time</topic><topic>Fourier transforms</topic><topic>Green's functions</topic><topic>Isotropy</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectricity</topic><topic>Stress concentration</topic><topic>Stress intensity factors</topic><topic>Stress state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirilyuk, V. S.</creatorcontrib><creatorcontrib>Levchuk, O. I.</creatorcontrib><collection>CrossRef</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirilyuk, V. S.</au><au>Levchuk, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack</atitle><jtitle>International applied mechanics</jtitle><stitle>Int Appl Mech</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>305</spage><epage>312</epage><pages>305-312</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><abstract>The electric and stress state of an orthotropic electroelastic medium with an elliptic crack acted upon by mechanical and electric loads is analyzed. To solve the problem, the triple Fourier transform and Fourier-image of the Green function for an infinite orthotropic piezoelectric medium are used. The approach is tested by solving the problem for a crack located in the isotropy plane of a transversely isotropic piezoelectric material, for which the exact solution exists. The comparison of the results of calculations confirms the high efficiency of the approach. The distribution of stress intensity factors along the front of the crack in an orthotropic electroelastic material under uniform loading is studied numerically</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10778-017-0812-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7095 |
ispartof | International applied mechanics, 2017-05, Vol.53 (3), p.305-312 |
issn | 1063-7095 1573-8582 |
language | eng |
recordid | cdi_proquest_journals_1938181101 |
source | SpringerLink (Online service) |
subjects | Applications of Mathematics Classical Mechanics Computing time Fourier transforms Green's functions Isotropy Physics Physics and Astronomy Piezoelectricity Stress concentration Stress intensity factors Stress state |
title | Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20State%20of%20an%20Orthotropic%20Piezoelectric%20Material%20with%20an%20Elliptic%20Crack&rft.jtitle=International%20applied%20mechanics&rft.au=Kirilyuk,%20V.%20S.&rft.date=2017-05-01&rft.volume=53&rft.issue=3&rft.spage=305&rft.epage=312&rft.pages=305-312&rft.issn=1063-7095&rft.eissn=1573-8582&rft_id=info:doi/10.1007/s10778-017-0812-8&rft_dat=%3Cgale_proqu%3EA513642221%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938181101&rft_id=info:pmid/&rft_galeid=A513642221&rfr_iscdi=true |