Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams
In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2017-07, Vol.93, p.96-105 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | |
container_start_page | 96 |
container_title | International journal of non-linear mechanics |
container_volume | 93 |
creator | Krysko, A.V. Awrejcewicz, J. Zhigalov, M.V. Pavlov, S.P. Krysko, V.A. |
description | In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes both Bernoulli-Euler and Timoshenko models with/without geometric/physical non-linearity, and the size-dependent beam behaviour.
In addition, we present results of the development of the relaxation method for solution to numerous static problems. The influence of the size-dependent coefficient on the load-deflection and stress-strain states of the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson mathematical models has been also studied.
•Three mathematical models of flexible beams are derived.•Both geometric and physical non-linearities are included.•Influence of the size-dependent parameters on the load-deflection and stress-strain states of the beams is studied.•The modified relaxation method is employed to solve nonlinear problems of statics.•Scenarios of transition from regular to chaotic beams dynamics are reported. |
doi_str_mv | 10.1016/j.ijnonlinmec.2017.03.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938146816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002074621630110X</els_id><sourcerecordid>1938146816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-703744da39cf6742101cf49d25d59fae21b96f63aaf0f6ffee6c7e744af5d3003</originalsourceid><addsrcrecordid>eNqNUcFO3DAQtaoisQX-wVXPScdx4iS9VatCKyHgQM-WY4-Lo6y92NkV29_iB-uwFeLIyZ7xezPP7xHymUHJgImvY-lGH_zk_AZ1WQFrS-AlQPOBrFjXdkUjePeRrAAqKNpaVKfkU0ojZG4N7Yo837yQUUU64IPau7CLNFhqnLUY0c_UTvjkhglpcn-xMLhFb5b-gGqT6CYYnBIdVEJDg6fzAy49Z12uddhtF-IcMaXlKcRDSe9UnCn7Rq_CHqN3_g_Fx52aXfCJKm8yPBc6X9V0SC4tal41vCw9JydWTQkv_p9n5Pflj_v1z-L69urX-vt1oXndz0ULvK1ro3ivrWjrKvulbd2bqjFNbxVWbOiFFVwpC1bk76LQLWaKso3hAPyMfDnO3cbwuMM0yzG7k2UlyXresVp0TGRUf0TpGFKKaOU2uo2KB8lALhnJUb7JSC4ZSeAyZ5S56yM3e4h7h1Em7dBrNC6inqUJ7h1T_gFlSKVe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938146816</pqid></control><display><type>article</type><title>Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Krysko, A.V. ; Awrejcewicz, J. ; Zhigalov, M.V. ; Pavlov, S.P. ; Krysko, V.A.</creator><creatorcontrib>Krysko, A.V. ; Awrejcewicz, J. ; Zhigalov, M.V. ; Pavlov, S.P. ; Krysko, V.A.</creatorcontrib><description>In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes both Bernoulli-Euler and Timoshenko models with/without geometric/physical non-linearity, and the size-dependent beam behaviour.
In addition, we present results of the development of the relaxation method for solution to numerous static problems. The influence of the size-dependent coefficient on the load-deflection and stress-strain states of the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson mathematical models has been also studied.
•Three mathematical models of flexible beams are derived.•Both geometric and physical non-linearities are included.•Influence of the size-dependent parameters on the load-deflection and stress-strain states of the beams is studied.•The modified relaxation method is employed to solve nonlinear problems of statics.•Scenarios of transition from regular to chaotic beams dynamics are reported.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2017.03.005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Beam models ; Beams (structural) ; Bernoulli Hypothesis ; Chaos ; Linearity ; Mathematical analysis ; Mathematical models ; Nano-mechanics ; Nonlinearity ; Relaxation method (mathematics) ; Stress relaxation ; Stress-strain curves ; Vibrations</subject><ispartof>International journal of non-linear mechanics, 2017-07, Vol.93, p.96-105</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-703744da39cf6742101cf49d25d59fae21b96f63aaf0f6ffee6c7e744af5d3003</citedby><cites>FETCH-LOGICAL-c349t-703744da39cf6742101cf49d25d59fae21b96f63aaf0f6ffee6c7e744af5d3003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2017.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Krysko, A.V.</creatorcontrib><creatorcontrib>Awrejcewicz, J.</creatorcontrib><creatorcontrib>Zhigalov, M.V.</creatorcontrib><creatorcontrib>Pavlov, S.P.</creatorcontrib><creatorcontrib>Krysko, V.A.</creatorcontrib><title>Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams</title><title>International journal of non-linear mechanics</title><description>In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes both Bernoulli-Euler and Timoshenko models with/without geometric/physical non-linearity, and the size-dependent beam behaviour.
In addition, we present results of the development of the relaxation method for solution to numerous static problems. The influence of the size-dependent coefficient on the load-deflection and stress-strain states of the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson mathematical models has been also studied.
•Three mathematical models of flexible beams are derived.•Both geometric and physical non-linearities are included.•Influence of the size-dependent parameters on the load-deflection and stress-strain states of the beams is studied.•The modified relaxation method is employed to solve nonlinear problems of statics.•Scenarios of transition from regular to chaotic beams dynamics are reported.</description><subject>Beam models</subject><subject>Beams (structural)</subject><subject>Bernoulli Hypothesis</subject><subject>Chaos</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nano-mechanics</subject><subject>Nonlinearity</subject><subject>Relaxation method (mathematics)</subject><subject>Stress relaxation</subject><subject>Stress-strain curves</subject><subject>Vibrations</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUcFO3DAQtaoisQX-wVXPScdx4iS9VatCKyHgQM-WY4-Lo6y92NkV29_iB-uwFeLIyZ7xezPP7xHymUHJgImvY-lGH_zk_AZ1WQFrS-AlQPOBrFjXdkUjePeRrAAqKNpaVKfkU0ojZG4N7Yo837yQUUU64IPau7CLNFhqnLUY0c_UTvjkhglpcn-xMLhFb5b-gGqT6CYYnBIdVEJDg6fzAy49Z12uddhtF-IcMaXlKcRDSe9UnCn7Rq_CHqN3_g_Fx52aXfCJKm8yPBc6X9V0SC4tal41vCw9JydWTQkv_p9n5Pflj_v1z-L69urX-vt1oXndz0ULvK1ro3ivrWjrKvulbd2bqjFNbxVWbOiFFVwpC1bk76LQLWaKso3hAPyMfDnO3cbwuMM0yzG7k2UlyXresVp0TGRUf0TpGFKKaOU2uo2KB8lALhnJUb7JSC4ZSeAyZ5S56yM3e4h7h1Em7dBrNC6inqUJ7h1T_gFlSKVe</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Krysko, A.V.</creator><creator>Awrejcewicz, J.</creator><creator>Zhigalov, M.V.</creator><creator>Pavlov, S.P.</creator><creator>Krysko, V.A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201707</creationdate><title>Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams</title><author>Krysko, A.V. ; Awrejcewicz, J. ; Zhigalov, M.V. ; Pavlov, S.P. ; Krysko, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-703744da39cf6742101cf49d25d59fae21b96f63aaf0f6ffee6c7e744af5d3003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Beam models</topic><topic>Beams (structural)</topic><topic>Bernoulli Hypothesis</topic><topic>Chaos</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nano-mechanics</topic><topic>Nonlinearity</topic><topic>Relaxation method (mathematics)</topic><topic>Stress relaxation</topic><topic>Stress-strain curves</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krysko, A.V.</creatorcontrib><creatorcontrib>Awrejcewicz, J.</creatorcontrib><creatorcontrib>Zhigalov, M.V.</creatorcontrib><creatorcontrib>Pavlov, S.P.</creatorcontrib><creatorcontrib>Krysko, V.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krysko, A.V.</au><au>Awrejcewicz, J.</au><au>Zhigalov, M.V.</au><au>Pavlov, S.P.</au><au>Krysko, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>93</volume><spage>96</spage><epage>105</epage><pages>96-105</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes both Bernoulli-Euler and Timoshenko models with/without geometric/physical non-linearity, and the size-dependent beam behaviour.
In addition, we present results of the development of the relaxation method for solution to numerous static problems. The influence of the size-dependent coefficient on the load-deflection and stress-strain states of the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson mathematical models has been also studied.
•Three mathematical models of flexible beams are derived.•Both geometric and physical non-linearities are included.•Influence of the size-dependent parameters on the load-deflection and stress-strain states of the beams is studied.•The modified relaxation method is employed to solve nonlinear problems of statics.•Scenarios of transition from regular to chaotic beams dynamics are reported.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2017.03.005</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2017-07, Vol.93, p.96-105 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_journals_1938146816 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Beam models Beams (structural) Bernoulli Hypothesis Chaos Linearity Mathematical analysis Mathematical models Nano-mechanics Nonlinearity Relaxation method (mathematics) Stress relaxation Stress-strain curves Vibrations |
title | Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20behaviour%20of%20different%20flexible%20size-dependent%20beams%20models%20based%20on%20the%20modified%20couple%20stress%20theory.%20Part%201:%20Governing%20equations%20and%20static%20analysis%20of%20flexible%20beams&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Krysko,%20A.V.&rft.date=2017-07&rft.volume=93&rft.spage=96&rft.epage=105&rft.pages=96-105&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2017.03.005&rft_dat=%3Cproquest_cross%3E1938146816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938146816&rft_id=info:pmid/&rft_els_id=S002074621630110X&rfr_iscdi=true |