Microscopic and macroscopic instabilities in hyperelastic fiber composites

In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2017-02, Vol.99, p.471-482
Hauptverfasser: Slesarenko, Viacheslav, Rudykh, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue
container_start_page 471
container_title Journal of the mechanics and physics of solids
container_volume 99
creator Slesarenko, Viacheslav
Rudykh, Stephan
description In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.
doi_str_mv 10.1016/j.jmps.2016.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938143144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509616304689</els_id><sourcerecordid>1938143144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgquW3OTNEnBjQw-GXGj65Cmt5gyfZh0BP_elBHcubqPc859HEIugRZAQV53RddPsWApLwAKStkRWYFWPBdKs2OySh2Wl7SSp-Qsxo5SWlIFK_L84l0Yoxsn7zI7NFlv_2o_xNnWfudnjzFV2cf3hAF3Ns4JbX2NIXNjP43RzxjPyUlrdxEvfuOavN_fvW0e8-3rw9Pmdps7zvScWya1RMWlFq60FWsa21YCVS2FcMoilpTbtmUJ0LqteNWAsCBqqWSNjiq-JleHuVMYP_cYZ9ON-zCklQYqrkFwECKx2IG1vBMDtmYKvrfh2wA1i2emM4tnZvHMAJjkUBLdHESY7v_yGEx0HgeHjQ_oZtOM_j_5Dw8odm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938143144</pqid></control><display><type>article</type><title>Microscopic and macroscopic instabilities in hyperelastic fiber composites</title><source>Elsevier ScienceDirect Journals</source><creator>Slesarenko, Viacheslav ; Rudykh, Stephan</creator><creatorcontrib>Slesarenko, Viacheslav ; Rudykh, Stephan</creatorcontrib><description>In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2016.11.002</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Bifurcation ; Buckling ; Concentration (composition) ; Deformation ; Fiber composites ; Fiber reinforced composites ; Fibers ; Finite deformation ; Instability ; Laminates ; Loss of ellipticity ; Microscopic instabilities ; Modulus of elasticity ; Stability ; Studies ; Three dimensional composites ; Transition points ; Wavelengths</subject><ispartof>Journal of the mechanics and physics of solids, 2017-02, Vol.99, p.471-482</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</citedby><cites>FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509616304689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Slesarenko, Viacheslav</creatorcontrib><creatorcontrib>Rudykh, Stephan</creatorcontrib><title>Microscopic and macroscopic instabilities in hyperelastic fiber composites</title><title>Journal of the mechanics and physics of solids</title><description>In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.</description><subject>Bifurcation</subject><subject>Buckling</subject><subject>Concentration (composition)</subject><subject>Deformation</subject><subject>Fiber composites</subject><subject>Fiber reinforced composites</subject><subject>Fibers</subject><subject>Finite deformation</subject><subject>Instability</subject><subject>Laminates</subject><subject>Loss of ellipticity</subject><subject>Microscopic instabilities</subject><subject>Modulus of elasticity</subject><subject>Stability</subject><subject>Studies</subject><subject>Three dimensional composites</subject><subject>Transition points</subject><subject>Wavelengths</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLgOPoDrgquW3OTNEnBjQw-GXGj65Cmt5gyfZh0BP_elBHcubqPc859HEIugRZAQV53RddPsWApLwAKStkRWYFWPBdKs2OySh2Wl7SSp-Qsxo5SWlIFK_L84l0Yoxsn7zI7NFlv_2o_xNnWfudnjzFV2cf3hAF3Ns4JbX2NIXNjP43RzxjPyUlrdxEvfuOavN_fvW0e8-3rw9Pmdps7zvScWya1RMWlFq60FWsa21YCVS2FcMoilpTbtmUJ0LqteNWAsCBqqWSNjiq-JleHuVMYP_cYZ9ON-zCklQYqrkFwECKx2IG1vBMDtmYKvrfh2wA1i2emM4tnZvHMAJjkUBLdHESY7v_yGEx0HgeHjQ_oZtOM_j_5Dw8odm4</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Slesarenko, Viacheslav</creator><creator>Rudykh, Stephan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201702</creationdate><title>Microscopic and macroscopic instabilities in hyperelastic fiber composites</title><author>Slesarenko, Viacheslav ; Rudykh, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bifurcation</topic><topic>Buckling</topic><topic>Concentration (composition)</topic><topic>Deformation</topic><topic>Fiber composites</topic><topic>Fiber reinforced composites</topic><topic>Fibers</topic><topic>Finite deformation</topic><topic>Instability</topic><topic>Laminates</topic><topic>Loss of ellipticity</topic><topic>Microscopic instabilities</topic><topic>Modulus of elasticity</topic><topic>Stability</topic><topic>Studies</topic><topic>Three dimensional composites</topic><topic>Transition points</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slesarenko, Viacheslav</creatorcontrib><creatorcontrib>Rudykh, Stephan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slesarenko, Viacheslav</au><au>Rudykh, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic and macroscopic instabilities in hyperelastic fiber composites</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2017-02</date><risdate>2017</risdate><volume>99</volume><spage>471</spage><epage>482</epage><pages>471-482</pages><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2016.11.002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2017-02, Vol.99, p.471-482
issn 0022-5096
1873-4782
language eng
recordid cdi_proquest_journals_1938143144
source Elsevier ScienceDirect Journals
subjects Bifurcation
Buckling
Concentration (composition)
Deformation
Fiber composites
Fiber reinforced composites
Fibers
Finite deformation
Instability
Laminates
Loss of ellipticity
Microscopic instabilities
Modulus of elasticity
Stability
Studies
Three dimensional composites
Transition points
Wavelengths
title Microscopic and macroscopic instabilities in hyperelastic fiber composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20and%20macroscopic%20instabilities%20in%20hyperelastic%20fiber%20composites&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Slesarenko,%20Viacheslav&rft.date=2017-02&rft.volume=99&rft.spage=471&rft.epage=482&rft.pages=471-482&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2016.11.002&rft_dat=%3Cproquest_cross%3E1938143144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938143144&rft_id=info:pmid/&rft_els_id=S0022509616304689&rfr_iscdi=true