Microscopic and macroscopic instabilities in hyperelastic fiber composites
In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2017-02, Vol.99, p.471-482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | |
container_start_page | 471 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 99 |
creator | Slesarenko, Viacheslav Rudykh, Stephan |
description | In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites. |
doi_str_mv | 10.1016/j.jmps.2016.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1938143144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509616304689</els_id><sourcerecordid>1938143144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoDrgquW3OTNEnBjQw-GXGj65Cmt5gyfZh0BP_elBHcubqPc859HEIugRZAQV53RddPsWApLwAKStkRWYFWPBdKs2OySh2Wl7SSp-Qsxo5SWlIFK_L84l0Yoxsn7zI7NFlv_2o_xNnWfudnjzFV2cf3hAF3Ns4JbX2NIXNjP43RzxjPyUlrdxEvfuOavN_fvW0e8-3rw9Pmdps7zvScWya1RMWlFq60FWsa21YCVS2FcMoilpTbtmUJ0LqteNWAsCBqqWSNjiq-JleHuVMYP_cYZ9ON-zCklQYqrkFwECKx2IG1vBMDtmYKvrfh2wA1i2emM4tnZvHMAJjkUBLdHESY7v_yGEx0HgeHjQ_oZtOM_j_5Dw8odm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938143144</pqid></control><display><type>article</type><title>Microscopic and macroscopic instabilities in hyperelastic fiber composites</title><source>Elsevier ScienceDirect Journals</source><creator>Slesarenko, Viacheslav ; Rudykh, Stephan</creator><creatorcontrib>Slesarenko, Viacheslav ; Rudykh, Stephan</creatorcontrib><description>In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2016.11.002</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Bifurcation ; Buckling ; Concentration (composition) ; Deformation ; Fiber composites ; Fiber reinforced composites ; Fibers ; Finite deformation ; Instability ; Laminates ; Loss of ellipticity ; Microscopic instabilities ; Modulus of elasticity ; Stability ; Studies ; Three dimensional composites ; Transition points ; Wavelengths</subject><ispartof>Journal of the mechanics and physics of solids, 2017-02, Vol.99, p.471-482</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</citedby><cites>FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509616304689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Slesarenko, Viacheslav</creatorcontrib><creatorcontrib>Rudykh, Stephan</creatorcontrib><title>Microscopic and macroscopic instabilities in hyperelastic fiber composites</title><title>Journal of the mechanics and physics of solids</title><description>In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.</description><subject>Bifurcation</subject><subject>Buckling</subject><subject>Concentration (composition)</subject><subject>Deformation</subject><subject>Fiber composites</subject><subject>Fiber reinforced composites</subject><subject>Fibers</subject><subject>Finite deformation</subject><subject>Instability</subject><subject>Laminates</subject><subject>Loss of ellipticity</subject><subject>Microscopic instabilities</subject><subject>Modulus of elasticity</subject><subject>Stability</subject><subject>Studies</subject><subject>Three dimensional composites</subject><subject>Transition points</subject><subject>Wavelengths</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLgOPoDrgquW3OTNEnBjQw-GXGj65Cmt5gyfZh0BP_elBHcubqPc859HEIugRZAQV53RddPsWApLwAKStkRWYFWPBdKs2OySh2Wl7SSp-Qsxo5SWlIFK_L84l0Yoxsn7zI7NFlv_2o_xNnWfudnjzFV2cf3hAF3Ns4JbX2NIXNjP43RzxjPyUlrdxEvfuOavN_fvW0e8-3rw9Pmdps7zvScWya1RMWlFq60FWsa21YCVS2FcMoilpTbtmUJ0LqteNWAsCBqqWSNjiq-JleHuVMYP_cYZ9ON-zCklQYqrkFwECKx2IG1vBMDtmYKvrfh2wA1i2emM4tnZvHMAJjkUBLdHESY7v_yGEx0HgeHjQ_oZtOM_j_5Dw8odm4</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Slesarenko, Viacheslav</creator><creator>Rudykh, Stephan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201702</creationdate><title>Microscopic and macroscopic instabilities in hyperelastic fiber composites</title><author>Slesarenko, Viacheslav ; Rudykh, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a2686e73684c5a92ddaf94e7b644c7aee503aff22dd88f939d14a14b676bec073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bifurcation</topic><topic>Buckling</topic><topic>Concentration (composition)</topic><topic>Deformation</topic><topic>Fiber composites</topic><topic>Fiber reinforced composites</topic><topic>Fibers</topic><topic>Finite deformation</topic><topic>Instability</topic><topic>Laminates</topic><topic>Loss of ellipticity</topic><topic>Microscopic instabilities</topic><topic>Modulus of elasticity</topic><topic>Stability</topic><topic>Studies</topic><topic>Three dimensional composites</topic><topic>Transition points</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slesarenko, Viacheslav</creatorcontrib><creatorcontrib>Rudykh, Stephan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slesarenko, Viacheslav</au><au>Rudykh, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic and macroscopic instabilities in hyperelastic fiber composites</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2017-02</date><risdate>2017</risdate><volume>99</volume><spage>471</spage><epage>482</epage><pages>471-482</pages><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>In this paper, we study the interplay between macroscopic and microscopic instabilities in 3D periodic fiber reinforced composites undergoing large deformations. We employ the Bloch-Floquet analysis to determine the onset of microscopic instabilities for composites with hyperelastic constituents. We show that the primary mode of buckling in the fiber composites is determined by the volume fraction of fibers and the contrast between elastic moduli of fiber and matrix phases. We find that for composites with volume fraction of fibers exceeding a threshold value, which depends on elastic modulus contrast, the primary buckling mode corresponds to the long wave or macroscopic instability. However, composites with a lower amount of fibers experience microscopic instabilities corresponding to wavy or helical buckling shapes. Buckling modes and critical wavelengths are shown to be highly tunable by material composition. A comparison between the instability behavior of 3D fiber composites and laminates, subjected to uniaxial compression, reveals the significant differences in critical strains, wavelengths, and transition points from macro- to microscopic instabilities in these composites.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2016.11.002</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2017-02, Vol.99, p.471-482 |
issn | 0022-5096 1873-4782 |
language | eng |
recordid | cdi_proquest_journals_1938143144 |
source | Elsevier ScienceDirect Journals |
subjects | Bifurcation Buckling Concentration (composition) Deformation Fiber composites Fiber reinforced composites Fibers Finite deformation Instability Laminates Loss of ellipticity Microscopic instabilities Modulus of elasticity Stability Studies Three dimensional composites Transition points Wavelengths |
title | Microscopic and macroscopic instabilities in hyperelastic fiber composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20and%20macroscopic%20instabilities%20in%20hyperelastic%20fiber%20composites&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Slesarenko,%20Viacheslav&rft.date=2017-02&rft.volume=99&rft.spage=471&rft.epage=482&rft.pages=471-482&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2016.11.002&rft_dat=%3Cproquest_cross%3E1938143144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938143144&rft_id=info:pmid/&rft_els_id=S0022509616304689&rfr_iscdi=true |