On the electrochemical properties of Mg-PSZ: an overview
MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2017-10, Vol.47 (10), p.1091-1113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1113 |
---|---|
container_issue | 10 |
container_start_page | 1091 |
container_title | Journal of applied electrochemistry |
container_volume | 47 |
creator | Rondão, A. I. B. Muccillo, E. N. S. Muccillo, R. Marques, F. M. B. |
description | MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10
−20
atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y
2
O
3
originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided.
Graphical abstract
Typical microstructure of Mg-PSZ with multiple phases and interfaces |
doi_str_mv | 10.1007/s10800-017-1112-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1937805209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937805209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wF3AdfS9TNJk3EnxCyoVVBA3IU3ftFPamZpMK_bXO2VcuHH1Nufe-ziMnSNcIoC5SggWQAAagYhS7A5YD7WRwtrMHrIegERhc3w_ZicpLQAglwPVY3Zc8WZOnJYUmliHOa3K4Jd8Hes1xaakxOuCP83E88vHNfcVr7cUtyV9nbKjwi8Tnf3ePnu7u30dPojR-P5xeDMSIdO6EV5aNfBaY9Aojbc4CUbpYFXh9XSCQFZ7SSDNlNBYq4wilEHBRGlSPmDWZxddb_vR54ZS4xb1JlbtpMM8Mxa0hLylsKNCrFOKVLh1LFc-fjsEtxfkOkGuFeT2gtyuzcguk1q2mlH80_xv6AdCIGcV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937805209</pqid></control><display><type>article</type><title>On the electrochemical properties of Mg-PSZ: an overview</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rondão, A. I. B. ; Muccillo, E. N. S. ; Muccillo, R. ; Marques, F. M. B.</creator><creatorcontrib>Rondão, A. I. B. ; Muccillo, E. N. S. ; Muccillo, R. ; Marques, F. M. B.</creatorcontrib><description>MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10
−20
atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y
2
O
3
originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided.
Graphical abstract
Typical microstructure of Mg-PSZ with multiple phases and interfaces</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-017-1112-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Electrical properties ; Electrochemical analysis ; Electrochemistry ; Electrochemistry and Nanotechnology ; Industrial Chemistry/Chemical Engineering ; Ionic mobility ; Magnesium oxide ; Materials handling ; Microstructure ; Oxygen probes ; Partially stabilized zirconia ; Phase composition ; Phases ; Physical Chemistry ; Review Paper ; Sensors ; Shock resistance ; Thermal resistance ; Thermal shock ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Journal of applied electrochemistry, 2017-10, Vol.47 (10), p.1091-1113</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</citedby><cites>FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</cites><orcidid>0000-0001-8631-6783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-017-1112-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-017-1112-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rondão, A. I. B.</creatorcontrib><creatorcontrib>Muccillo, E. N. S.</creatorcontrib><creatorcontrib>Muccillo, R.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><title>On the electrochemical properties of Mg-PSZ: an overview</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10
−20
atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y
2
O
3
originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided.
Graphical abstract
Typical microstructure of Mg-PSZ with multiple phases and interfaces</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrochemistry and Nanotechnology</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Ionic mobility</subject><subject>Magnesium oxide</subject><subject>Materials handling</subject><subject>Microstructure</subject><subject>Oxygen probes</subject><subject>Partially stabilized zirconia</subject><subject>Phase composition</subject><subject>Phases</subject><subject>Physical Chemistry</subject><subject>Review Paper</subject><subject>Sensors</subject><subject>Shock resistance</subject><subject>Thermal resistance</subject><subject>Thermal shock</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wF3AdfS9TNJk3EnxCyoVVBA3IU3ftFPamZpMK_bXO2VcuHH1Nufe-ziMnSNcIoC5SggWQAAagYhS7A5YD7WRwtrMHrIegERhc3w_ZicpLQAglwPVY3Zc8WZOnJYUmliHOa3K4Jd8Hes1xaakxOuCP83E88vHNfcVr7cUtyV9nbKjwi8Tnf3ePnu7u30dPojR-P5xeDMSIdO6EV5aNfBaY9Aojbc4CUbpYFXh9XSCQFZ7SSDNlNBYq4wilEHBRGlSPmDWZxddb_vR54ZS4xb1JlbtpMM8Mxa0hLylsKNCrFOKVLh1LFc-fjsEtxfkOkGuFeT2gtyuzcguk1q2mlH80_xv6AdCIGcV</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Rondão, A. I. B.</creator><creator>Muccillo, E. N. S.</creator><creator>Muccillo, R.</creator><creator>Marques, F. M. B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8631-6783</orcidid></search><sort><creationdate>20171001</creationdate><title>On the electrochemical properties of Mg-PSZ: an overview</title><author>Rondão, A. I. B. ; Muccillo, E. N. S. ; Muccillo, R. ; Marques, F. M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrochemistry and Nanotechnology</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Ionic mobility</topic><topic>Magnesium oxide</topic><topic>Materials handling</topic><topic>Microstructure</topic><topic>Oxygen probes</topic><topic>Partially stabilized zirconia</topic><topic>Phase composition</topic><topic>Phases</topic><topic>Physical Chemistry</topic><topic>Review Paper</topic><topic>Sensors</topic><topic>Shock resistance</topic><topic>Thermal resistance</topic><topic>Thermal shock</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rondão, A. I. B.</creatorcontrib><creatorcontrib>Muccillo, E. N. S.</creatorcontrib><creatorcontrib>Muccillo, R.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rondão, A. I. B.</au><au>Muccillo, E. N. S.</au><au>Muccillo, R.</au><au>Marques, F. M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the electrochemical properties of Mg-PSZ: an overview</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>1091</spage><epage>1113</epage><pages>1091-1113</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10
−20
atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y
2
O
3
originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided.
Graphical abstract
Typical microstructure of Mg-PSZ with multiple phases and interfaces</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-017-1112-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8631-6783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2017-10, Vol.47 (10), p.1091-1113 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_1937805209 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemistry Chemistry and Materials Science Electrical properties Electrochemical analysis Electrochemistry Electrochemistry and Nanotechnology Industrial Chemistry/Chemical Engineering Ionic mobility Magnesium oxide Materials handling Microstructure Oxygen probes Partially stabilized zirconia Phase composition Phases Physical Chemistry Review Paper Sensors Shock resistance Thermal resistance Thermal shock Yttrium oxide Zirconium dioxide |
title | On the electrochemical properties of Mg-PSZ: an overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20electrochemical%20properties%20of%20Mg-PSZ:%20an%20overview&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Rond%C3%A3o,%20A.%20I.%20B.&rft.date=2017-10-01&rft.volume=47&rft.issue=10&rft.spage=1091&rft.epage=1113&rft.pages=1091-1113&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-017-1112-z&rft_dat=%3Cproquest_cross%3E1937805209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937805209&rft_id=info:pmid/&rfr_iscdi=true |