On the electrochemical properties of Mg-PSZ: an overview

MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2017-10, Vol.47 (10), p.1091-1113
Hauptverfasser: Rondão, A. I. B., Muccillo, E. N. S., Muccillo, R., Marques, F. M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1113
container_issue 10
container_start_page 1091
container_title Journal of applied electrochemistry
container_volume 47
creator Rondão, A. I. B.
Muccillo, E. N. S.
Muccillo, R.
Marques, F. M. B.
description MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10 −20 atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y 2 O 3 originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided. Graphical abstract Typical microstructure of Mg-PSZ with multiple phases and interfaces
doi_str_mv 10.1007/s10800-017-1112-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1937805209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937805209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wF3AdfS9TNJk3EnxCyoVVBA3IU3ftFPamZpMK_bXO2VcuHH1Nufe-ziMnSNcIoC5SggWQAAagYhS7A5YD7WRwtrMHrIegERhc3w_ZicpLQAglwPVY3Zc8WZOnJYUmliHOa3K4Jd8Hes1xaakxOuCP83E88vHNfcVr7cUtyV9nbKjwi8Tnf3ePnu7u30dPojR-P5xeDMSIdO6EV5aNfBaY9Aojbc4CUbpYFXh9XSCQFZ7SSDNlNBYq4wilEHBRGlSPmDWZxddb_vR54ZS4xb1JlbtpMM8Mxa0hLylsKNCrFOKVLh1LFc-fjsEtxfkOkGuFeT2gtyuzcguk1q2mlH80_xv6AdCIGcV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937805209</pqid></control><display><type>article</type><title>On the electrochemical properties of Mg-PSZ: an overview</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rondão, A. I. B. ; Muccillo, E. N. S. ; Muccillo, R. ; Marques, F. M. B.</creator><creatorcontrib>Rondão, A. I. B. ; Muccillo, E. N. S. ; Muccillo, R. ; Marques, F. M. B.</creatorcontrib><description>MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10 −20 atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y 2 O 3 originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided. Graphical abstract Typical microstructure of Mg-PSZ with multiple phases and interfaces</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-017-1112-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Electrical properties ; Electrochemical analysis ; Electrochemistry ; Electrochemistry and Nanotechnology ; Industrial Chemistry/Chemical Engineering ; Ionic mobility ; Magnesium oxide ; Materials handling ; Microstructure ; Oxygen probes ; Partially stabilized zirconia ; Phase composition ; Phases ; Physical Chemistry ; Review Paper ; Sensors ; Shock resistance ; Thermal resistance ; Thermal shock ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Journal of applied electrochemistry, 2017-10, Vol.47 (10), p.1091-1113</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</citedby><cites>FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</cites><orcidid>0000-0001-8631-6783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-017-1112-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-017-1112-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rondão, A. I. B.</creatorcontrib><creatorcontrib>Muccillo, E. N. S.</creatorcontrib><creatorcontrib>Muccillo, R.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><title>On the electrochemical properties of Mg-PSZ: an overview</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10 −20 atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y 2 O 3 originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided. Graphical abstract Typical microstructure of Mg-PSZ with multiple phases and interfaces</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrochemistry and Nanotechnology</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Ionic mobility</subject><subject>Magnesium oxide</subject><subject>Materials handling</subject><subject>Microstructure</subject><subject>Oxygen probes</subject><subject>Partially stabilized zirconia</subject><subject>Phase composition</subject><subject>Phases</subject><subject>Physical Chemistry</subject><subject>Review Paper</subject><subject>Sensors</subject><subject>Shock resistance</subject><subject>Thermal resistance</subject><subject>Thermal shock</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wF3AdfS9TNJk3EnxCyoVVBA3IU3ftFPamZpMK_bXO2VcuHH1Nufe-ziMnSNcIoC5SggWQAAagYhS7A5YD7WRwtrMHrIegERhc3w_ZicpLQAglwPVY3Zc8WZOnJYUmliHOa3K4Jd8Hes1xaakxOuCP83E88vHNfcVr7cUtyV9nbKjwi8Tnf3ePnu7u30dPojR-P5xeDMSIdO6EV5aNfBaY9Aojbc4CUbpYFXh9XSCQFZ7SSDNlNBYq4wilEHBRGlSPmDWZxddb_vR54ZS4xb1JlbtpMM8Mxa0hLylsKNCrFOKVLh1LFc-fjsEtxfkOkGuFeT2gtyuzcguk1q2mlH80_xv6AdCIGcV</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Rondão, A. I. B.</creator><creator>Muccillo, E. N. S.</creator><creator>Muccillo, R.</creator><creator>Marques, F. M. B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8631-6783</orcidid></search><sort><creationdate>20171001</creationdate><title>On the electrochemical properties of Mg-PSZ: an overview</title><author>Rondão, A. I. B. ; Muccillo, E. N. S. ; Muccillo, R. ; Marques, F. M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-a2846a551c5127a81bc745c84fa5db10e85a2e027de1788474e12c40b45e4ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrochemistry and Nanotechnology</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Ionic mobility</topic><topic>Magnesium oxide</topic><topic>Materials handling</topic><topic>Microstructure</topic><topic>Oxygen probes</topic><topic>Partially stabilized zirconia</topic><topic>Phase composition</topic><topic>Phases</topic><topic>Physical Chemistry</topic><topic>Review Paper</topic><topic>Sensors</topic><topic>Shock resistance</topic><topic>Thermal resistance</topic><topic>Thermal shock</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rondão, A. I. B.</creatorcontrib><creatorcontrib>Muccillo, E. N. S.</creatorcontrib><creatorcontrib>Muccillo, R.</creatorcontrib><creatorcontrib>Marques, F. M. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rondão, A. I. B.</au><au>Muccillo, E. N. S.</au><au>Muccillo, R.</au><au>Marques, F. M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the electrochemical properties of Mg-PSZ: an overview</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>1091</spage><epage>1113</epage><pages>1091-1113</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>MgO-doped partially stabilized zirconia is a complex ceramic electrolyte in which all properties, phase composition, and microstructure are strongly influenced by thermal history besides chemical composition. The electrochemical performance of this ceramic used in oxygen sensors for molten steel is reviewed here. A wide collection of data on electrical properties obtained at various temperatures (up to 1600 °C) and oxygen partial pressures (from 1 atm to values below 10 −20 atm) is considered. New aspects are brought to evidence after proper handling of published data on undoped zirconia and MgO-doped materials. The close temperature dependencies of the lower limits of the ionic domains of all these materials suggest the relevance of acceptor-type contaminations on the performance of nominally pure materials. High ionic mobility in the tetragonal phase with respect to the cubic phase is also likely, based on published data. Dopants like Y 2 O 3 originate wider ionic domains but are not equally effective with respect to thermal shock resistance. The unique characteristics of MgO-doped zirconia are due to the coexistence of distinct phases, including large populations of finely dispersed monoclinic and/or tetragonal phases within cubic matrix grains. An overview of key features (materials and design) involved in the performance of oxygen sensors for molten steel is also provided. Graphical abstract Typical microstructure of Mg-PSZ with multiple phases and interfaces</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-017-1112-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8631-6783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2017-10, Vol.47 (10), p.1091-1113
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_1937805209
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Chemistry and Materials Science
Electrical properties
Electrochemical analysis
Electrochemistry
Electrochemistry and Nanotechnology
Industrial Chemistry/Chemical Engineering
Ionic mobility
Magnesium oxide
Materials handling
Microstructure
Oxygen probes
Partially stabilized zirconia
Phase composition
Phases
Physical Chemistry
Review Paper
Sensors
Shock resistance
Thermal resistance
Thermal shock
Yttrium oxide
Zirconium dioxide
title On the electrochemical properties of Mg-PSZ: an overview
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20electrochemical%20properties%20of%20Mg-PSZ:%20an%20overview&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Rond%C3%A3o,%20A.%20I.%20B.&rft.date=2017-10-01&rft.volume=47&rft.issue=10&rft.spage=1091&rft.epage=1113&rft.pages=1091-1113&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-017-1112-z&rft_dat=%3Cproquest_cross%3E1937805209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937805209&rft_id=info:pmid/&rfr_iscdi=true