Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting

Efficient capture of solar photons is crucial in photo-electrochemical (PEC) water splitting devices for converting solar energy to hydrogen as an energy-dense carrier. Herein, we first reported the unique multi-band light absorption character on carbon dots (CDs) with controllable surface states an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-09, Vol.121, p.201-208
Hauptverfasser: Xu, Xiaoyong, Bao, Zhijia, Tang, Wenshuai, Wu, Haiyan, Pan, Jing, Hu, Jingguo, Zeng, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 201
container_title Carbon (New York)
container_volume 121
creator Xu, Xiaoyong
Bao, Zhijia
Tang, Wenshuai
Wu, Haiyan
Pan, Jing
Hu, Jingguo
Zeng, Haibo
description Efficient capture of solar photons is crucial in photo-electrochemical (PEC) water splitting devices for converting solar energy to hydrogen as an energy-dense carrier. Herein, we first reported the unique multi-band light absorption character on carbon dots (CDs) with controllable surface states and built an efficient photoanode by bonding such CDs as favorable solar photosensitizers on one-dimensional (1D) ZnO nanorod arrays (NRAs) for the PEC solar-to-hydrogen (STH) conversion. The multi-transition models related to surface CO, and COH states with different energy levels were identified to dominate the CDs' multi-model optical absorption covering the full-range visible region in the solar spectrum, which renders an excellent advantage of CDs in serving as the solar photosensitizer for photoelectric systems. Moreover, the fabricated ZnO@CDs heterostructure photoanode with the functionalized CDs used to harvest solar photons along with subsequent charge separation at heterointerface and transport along 1D directional channels was demonstrated to boost the photocurrent output and the photoconversion efficiency for solar water splitting. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.05.095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1937410406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317305523</els_id><sourcerecordid>1937410406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-333fbfa7f6bff8a18becd92284ed4064a209b0d051faa1c33f28370efe66cb1a3</originalsourceid><addsrcrecordid>eNp9kM1q3DAQx0VJoZtt3yCHgZ7tSpbXH5dCCG1aCOTQ9tKLGMujjRZH2oy0CelD9Jmj4J57Gmb4fzA_IS6UrJVU3adDbZGnGOpGqr6Wu1qOuzdio4ZeV3oY1ZnYSCmHqmsa_U6cp3QoazuodiP-_jixQ0uQMmZKQGHvAxH7sIc1FOaYE2CC-9OSfTVhmGHx-7sMaLN_LE4KyWf_hziBiwy_wy0EDPHJMwEy4zMc72KO5TQT5AhTjClDigsyPJVWhnRcfM6l871463BJ9OHf3IpfX7_8vPpW3dxef7-6vKms7nWutNZucti7bnJuQDVMZOexaYaW5lZ2LTZynOQsd8ohKlvUzaB7SY66zk4K9VZ8XHOPHB9OlLI5xBOHUmnUqPtWyRJTVO2qshxTYnLmyP4e-dkoaV7Jm4NZIZlX8kbuTCFfbJ9XG5UPHj2xSdZTsDQXIjabOfr_B7wAB86Sgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937410406</pqid></control><display><type>article</type><title>Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Xiaoyong ; Bao, Zhijia ; Tang, Wenshuai ; Wu, Haiyan ; Pan, Jing ; Hu, Jingguo ; Zeng, Haibo</creator><creatorcontrib>Xu, Xiaoyong ; Bao, Zhijia ; Tang, Wenshuai ; Wu, Haiyan ; Pan, Jing ; Hu, Jingguo ; Zeng, Haibo</creatorcontrib><description>Efficient capture of solar photons is crucial in photo-electrochemical (PEC) water splitting devices for converting solar energy to hydrogen as an energy-dense carrier. Herein, we first reported the unique multi-band light absorption character on carbon dots (CDs) with controllable surface states and built an efficient photoanode by bonding such CDs as favorable solar photosensitizers on one-dimensional (1D) ZnO nanorod arrays (NRAs) for the PEC solar-to-hydrogen (STH) conversion. The multi-transition models related to surface CO, and COH states with different energy levels were identified to dominate the CDs' multi-model optical absorption covering the full-range visible region in the solar spectrum, which renders an excellent advantage of CDs in serving as the solar photosensitizer for photoelectric systems. Moreover, the fabricated ZnO@CDs heterostructure photoanode with the functionalized CDs used to harvest solar photons along with subsequent charge separation at heterointerface and transport along 1D directional channels was demonstrated to boost the photocurrent output and the photoconversion efficiency for solar water splitting. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.05.095</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Carbon dots ; Carrier density ; Electromagnetic absorption ; Energy levels ; Engineering ; Hydrogen-based energy ; Nanorods ; Nanowires ; PEC water splitting ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Photoelectricity ; Photons ; Photosensitization ; Solar energy ; Solar energy conversion ; Surface chemistry ; Water splitting ; Zinc oxide ; ZnO nanorod arrays</subject><ispartof>Carbon (New York), 2017-09, Vol.121, p.201-208</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-333fbfa7f6bff8a18becd92284ed4064a209b0d051faa1c33f28370efe66cb1a3</citedby><cites>FETCH-LOGICAL-c373t-333fbfa7f6bff8a18becd92284ed4064a209b0d051faa1c33f28370efe66cb1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317305523$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Xu, Xiaoyong</creatorcontrib><creatorcontrib>Bao, Zhijia</creatorcontrib><creatorcontrib>Tang, Wenshuai</creatorcontrib><creatorcontrib>Wu, Haiyan</creatorcontrib><creatorcontrib>Pan, Jing</creatorcontrib><creatorcontrib>Hu, Jingguo</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><title>Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting</title><title>Carbon (New York)</title><description>Efficient capture of solar photons is crucial in photo-electrochemical (PEC) water splitting devices for converting solar energy to hydrogen as an energy-dense carrier. Herein, we first reported the unique multi-band light absorption character on carbon dots (CDs) with controllable surface states and built an efficient photoanode by bonding such CDs as favorable solar photosensitizers on one-dimensional (1D) ZnO nanorod arrays (NRAs) for the PEC solar-to-hydrogen (STH) conversion. The multi-transition models related to surface CO, and COH states with different energy levels were identified to dominate the CDs' multi-model optical absorption covering the full-range visible region in the solar spectrum, which renders an excellent advantage of CDs in serving as the solar photosensitizer for photoelectric systems. Moreover, the fabricated ZnO@CDs heterostructure photoanode with the functionalized CDs used to harvest solar photons along with subsequent charge separation at heterointerface and transport along 1D directional channels was demonstrated to boost the photocurrent output and the photoconversion efficiency for solar water splitting. [Display omitted]</description><subject>Carbon</subject><subject>Carbon dots</subject><subject>Carrier density</subject><subject>Electromagnetic absorption</subject><subject>Energy levels</subject><subject>Engineering</subject><subject>Hydrogen-based energy</subject><subject>Nanorods</subject><subject>Nanowires</subject><subject>PEC water splitting</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectricity</subject><subject>Photons</subject><subject>Photosensitization</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Surface chemistry</subject><subject>Water splitting</subject><subject>Zinc oxide</subject><subject>ZnO nanorod arrays</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAQx0VJoZtt3yCHgZ7tSpbXH5dCCG1aCOTQ9tKLGMujjRZH2oy0CelD9Jmj4J57Gmb4fzA_IS6UrJVU3adDbZGnGOpGqr6Wu1qOuzdio4ZeV3oY1ZnYSCmHqmsa_U6cp3QoazuodiP-_jixQ0uQMmZKQGHvAxH7sIc1FOaYE2CC-9OSfTVhmGHx-7sMaLN_LE4KyWf_hziBiwy_wy0EDPHJMwEy4zMc72KO5TQT5AhTjClDigsyPJVWhnRcfM6l871463BJ9OHf3IpfX7_8vPpW3dxef7-6vKms7nWutNZucti7bnJuQDVMZOexaYaW5lZ2LTZynOQsd8ohKlvUzaB7SY66zk4K9VZ8XHOPHB9OlLI5xBOHUmnUqPtWyRJTVO2qshxTYnLmyP4e-dkoaV7Jm4NZIZlX8kbuTCFfbJ9XG5UPHj2xSdZTsDQXIjabOfr_B7wAB86Sgg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Xu, Xiaoyong</creator><creator>Bao, Zhijia</creator><creator>Tang, Wenshuai</creator><creator>Wu, Haiyan</creator><creator>Pan, Jing</creator><creator>Hu, Jingguo</creator><creator>Zeng, Haibo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170901</creationdate><title>Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting</title><author>Xu, Xiaoyong ; Bao, Zhijia ; Tang, Wenshuai ; Wu, Haiyan ; Pan, Jing ; Hu, Jingguo ; Zeng, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-333fbfa7f6bff8a18becd92284ed4064a209b0d051faa1c33f28370efe66cb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon dots</topic><topic>Carrier density</topic><topic>Electromagnetic absorption</topic><topic>Energy levels</topic><topic>Engineering</topic><topic>Hydrogen-based energy</topic><topic>Nanorods</topic><topic>Nanowires</topic><topic>PEC water splitting</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectricity</topic><topic>Photons</topic><topic>Photosensitization</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Surface chemistry</topic><topic>Water splitting</topic><topic>Zinc oxide</topic><topic>ZnO nanorod arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaoyong</creatorcontrib><creatorcontrib>Bao, Zhijia</creatorcontrib><creatorcontrib>Tang, Wenshuai</creatorcontrib><creatorcontrib>Wu, Haiyan</creatorcontrib><creatorcontrib>Pan, Jing</creatorcontrib><creatorcontrib>Hu, Jingguo</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaoyong</au><au>Bao, Zhijia</au><au>Tang, Wenshuai</au><au>Wu, Haiyan</au><au>Pan, Jing</au><au>Hu, Jingguo</au><au>Zeng, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting</atitle><jtitle>Carbon (New York)</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>121</volume><spage>201</spage><epage>208</epage><pages>201-208</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Efficient capture of solar photons is crucial in photo-electrochemical (PEC) water splitting devices for converting solar energy to hydrogen as an energy-dense carrier. Herein, we first reported the unique multi-band light absorption character on carbon dots (CDs) with controllable surface states and built an efficient photoanode by bonding such CDs as favorable solar photosensitizers on one-dimensional (1D) ZnO nanorod arrays (NRAs) for the PEC solar-to-hydrogen (STH) conversion. The multi-transition models related to surface CO, and COH states with different energy levels were identified to dominate the CDs' multi-model optical absorption covering the full-range visible region in the solar spectrum, which renders an excellent advantage of CDs in serving as the solar photosensitizer for photoelectric systems. Moreover, the fabricated ZnO@CDs heterostructure photoanode with the functionalized CDs used to harvest solar photons along with subsequent charge separation at heterointerface and transport along 1D directional channels was demonstrated to boost the photocurrent output and the photoconversion efficiency for solar water splitting. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.05.095</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-09, Vol.121, p.201-208
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1937410406
source Elsevier ScienceDirect Journals Complete
subjects Carbon
Carbon dots
Carrier density
Electromagnetic absorption
Energy levels
Engineering
Hydrogen-based energy
Nanorods
Nanowires
PEC water splitting
Photoanodes
Photoelectric effect
Photoelectric emission
Photoelectricity
Photons
Photosensitization
Solar energy
Solar energy conversion
Surface chemistry
Water splitting
Zinc oxide
ZnO nanorod arrays
title Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20states%20engineering%20carbon%20dots%20as%20multi-band%20light%20active%20sensitizers%20for%20ZnO%20nanowire%20array%20photoanode%20to%20boost%20solar%20water%20splitting&rft.jtitle=Carbon%20(New%20York)&rft.au=Xu,%20Xiaoyong&rft.date=2017-09-01&rft.volume=121&rft.spage=201&rft.epage=208&rft.pages=201-208&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.05.095&rft_dat=%3Cproquest_cross%3E1937410406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937410406&rft_id=info:pmid/&rft_els_id=S0008622317305523&rfr_iscdi=true