Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions–Boger fluids
• Predictive matching of Boger-fluid experiments in circular contraction-expansions.• Flow-transitions predicted for all aspect-ratios (α) and with rise in flow-rate.• Precise capture of enhanced pressure drops, epdmax∼600% (α=10).• α≥6: salient-c/lip-vortex co-existence observed, then dominated by...
Gespeichert in:
Veröffentlicht in: | Journal of non-Newtonian fluid mechanics 2016-11, Vol.237, p.39-53 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | |
container_start_page | 39 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 237 |
creator | López-Aguilar, J.E. Webster, M.F. Tamaddon-Jahromi, H.R. Pérez-Camacho, M. Manero, O. |
description | • Predictive matching of Boger-fluid experiments in circular contraction-expansions.• Flow-transitions predicted for all aspect-ratios (α) and with rise in flow-rate.• Precise capture of enhanced pressure drops, epdmax∼600% (α=10).• α≥6: salient-c/lip-vortex co-existence observed, then dominated by elastic c-vortex.• Tight correspondence in flow-structure between streamline patterns and N1-fields.
This study is concerned with the continuum modelling of sharp-corner contraction-expansion axisymmetric flows, under contraction-ratio variation, and more particularly, in the precise capture of the large-levels of experimental excess pressure-drops (epd) for Boger fluids. The particular contraction-ratios (α) considered are those studied experimentally by M. Pérez-Camacho, J.E. López-Aguilar, F. Calderas, O. Manero, M.F. Webster, J. Non-Newton. Fluid Mech. 222 (2015) 260–271; of α={2, 4, 6, 8, 10}. Their experimental PAA/corn-syrup Boger fluids have been characterized and modelled with the so-called swanINNFM model through dissipative continuum-scale modelling. This facilitates the precise capture of experimental-levels of epd-data (largest epd=O(6) under α = 10 contraction-ratio and sharp corners). The swanINNFM model has already proven capable of reproducing the large excess pressure-drops reported by J.P. Rothstein, G.H. McKinley, J. Non-Newton. Fluid Mech. 98 (2001) 33–63, in their experiments (epd=O(3) for α=4 contraction-ratio and PS/PS Boger fluids); it is also capable of reproducing the Boger-fluid pressure-drop rise, relative to Newtonian-instance, in axisymmetric α=4 contraction-flow, as opposed to the null rise observed in the planar counterpart reported by S. Nigen, K. Walters, J. Non-Newton. Fluid Mech., 102 (2002) 343–359. In the present study, at each contraction-ratio and under De-rise (flow-rate-increase), one may identify two main phases: i) an epd plateauing-region at low deformation-rates, and ii) a sudden epd-rise above the Newtonian unity reference- line. With elevation in contraction-ratio, the first plateaued-epd phase is elongated and the maximum epd-levels rise significantly. Such epd-elevation is captured theoretically and numerically, with counterpart rise in extensional-viscosity. In addition, this position in epd-response correlates well against trends in vortex-dynamics - correctly capturing lip-vortex appearance, lip-vortex and salient-corner vortex co-existence and coalescence, and ultimate elastic corner-vortex domination. In th |
doi_str_mv | 10.1016/j.jnnfm.2016.10.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1936514121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025716302488</els_id><sourcerecordid>1936514121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-a15fe331f831c6f9ab231456865ee75aa5190b61e8857a36c528bb60f20411c33</originalsourceid><addsrcrecordid>eNp9kM9u1DAQxi1EJZYtT8DFEudsPXHsZA8c2hVtkSpxoWfL64yLo60dxkkFN56gl75hn6ROlwMnfJk__r4ZzY-xjyA2IECfDZshRn-_qUtROhsh1Bu2gq6VVa0lvGUrIdu2ErVq37H3OQ-iPCX1ij3uUpzIuimkWJEtgT9YCksSuY09Hwn78PrNk-cHS3fI8deIFO4xTvawCHKeCaue0ph5iDz_sDRWLlFE4i6Qm4uNu38WlQE25pLl5z9PF-mu6PxhDn0-ZSfeHjJ--BvX7Pbyy_fddXXz7err7vymck1TT5UF5VFK8J0Ep_3W7msJjdKdVoitslbBVuw1YNep1krtVN3t91r4WjQATso1-3ScO1L6OWOezJBmimWlga3UChqooajkUeUo5UzozVjOtvTbgDALeDOYV_BmAb80F6pr9vnownLAQ0Ay2QWMrnAkdJPpU_iv_wU21ZGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936514121</pqid></control><display><type>article</type><title>Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions–Boger fluids</title><source>Elsevier ScienceDirect Journals</source><creator>López-Aguilar, J.E. ; Webster, M.F. ; Tamaddon-Jahromi, H.R. ; Pérez-Camacho, M. ; Manero, O.</creator><creatorcontrib>López-Aguilar, J.E. ; Webster, M.F. ; Tamaddon-Jahromi, H.R. ; Pérez-Camacho, M. ; Manero, O.</creatorcontrib><description>• Predictive matching of Boger-fluid experiments in circular contraction-expansions.• Flow-transitions predicted for all aspect-ratios (α) and with rise in flow-rate.• Precise capture of enhanced pressure drops, epdmax∼600% (α=10).• α≥6: salient-c/lip-vortex co-existence observed, then dominated by elastic c-vortex.• Tight correspondence in flow-structure between streamline patterns and N1-fields.
This study is concerned with the continuum modelling of sharp-corner contraction-expansion axisymmetric flows, under contraction-ratio variation, and more particularly, in the precise capture of the large-levels of experimental excess pressure-drops (epd) for Boger fluids. The particular contraction-ratios (α) considered are those studied experimentally by M. Pérez-Camacho, J.E. López-Aguilar, F. Calderas, O. Manero, M.F. Webster, J. Non-Newton. Fluid Mech. 222 (2015) 260–271; of α={2, 4, 6, 8, 10}. Their experimental PAA/corn-syrup Boger fluids have been characterized and modelled with the so-called swanINNFM model through dissipative continuum-scale modelling. This facilitates the precise capture of experimental-levels of epd-data (largest epd=O(6) under α = 10 contraction-ratio and sharp corners). The swanINNFM model has already proven capable of reproducing the large excess pressure-drops reported by J.P. Rothstein, G.H. McKinley, J. Non-Newton. Fluid Mech. 98 (2001) 33–63, in their experiments (epd=O(3) for α=4 contraction-ratio and PS/PS Boger fluids); it is also capable of reproducing the Boger-fluid pressure-drop rise, relative to Newtonian-instance, in axisymmetric α=4 contraction-flow, as opposed to the null rise observed in the planar counterpart reported by S. Nigen, K. Walters, J. Non-Newton. Fluid Mech., 102 (2002) 343–359. In the present study, at each contraction-ratio and under De-rise (flow-rate-increase), one may identify two main phases: i) an epd plateauing-region at low deformation-rates, and ii) a sudden epd-rise above the Newtonian unity reference- line. With elevation in contraction-ratio, the first plateaued-epd phase is elongated and the maximum epd-levels rise significantly. Such epd-elevation is captured theoretically and numerically, with counterpart rise in extensional-viscosity. In addition, this position in epd-response correlates well against trends in vortex-dynamics - correctly capturing lip-vortex appearance, lip-vortex and salient-corner vortex co-existence and coalescence, and ultimate elastic corner-vortex domination. In this respect, their presence and transitions, may themselves be linked to increased elastic effects and normal-stress response.
[Display omitted]</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2016.10.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Axisymmetric flow ; Coalescing ; Computational fluid dynamics ; Continuum modelling ; Corn ; Deformation ; Dissipation ; Elevation ; Elongation ; epd-enhancement and flow-structure matching Boger-fluids, contraction-ratio variation ; Expansion & contraction ; Fluid dynamics ; Fluid flow ; Fluid pressure ; Lip, salient and elastic corner vortices ; Mathematical models ; Modelling ; Pressure ; SwanINNFM model, numerical simulation ; Syrup ; Viscosity ; Vortices</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2016-11, Vol.237, p.39-53</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-a15fe331f831c6f9ab231456865ee75aa5190b61e8857a36c528bb60f20411c33</citedby><cites>FETCH-LOGICAL-c442t-a15fe331f831c6f9ab231456865ee75aa5190b61e8857a36c528bb60f20411c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2016.10.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>López-Aguilar, J.E.</creatorcontrib><creatorcontrib>Webster, M.F.</creatorcontrib><creatorcontrib>Tamaddon-Jahromi, H.R.</creatorcontrib><creatorcontrib>Pérez-Camacho, M.</creatorcontrib><creatorcontrib>Manero, O.</creatorcontrib><title>Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions–Boger fluids</title><title>Journal of non-Newtonian fluid mechanics</title><description>• Predictive matching of Boger-fluid experiments in circular contraction-expansions.• Flow-transitions predicted for all aspect-ratios (α) and with rise in flow-rate.• Precise capture of enhanced pressure drops, epdmax∼600% (α=10).• α≥6: salient-c/lip-vortex co-existence observed, then dominated by elastic c-vortex.• Tight correspondence in flow-structure between streamline patterns and N1-fields.
This study is concerned with the continuum modelling of sharp-corner contraction-expansion axisymmetric flows, under contraction-ratio variation, and more particularly, in the precise capture of the large-levels of experimental excess pressure-drops (epd) for Boger fluids. The particular contraction-ratios (α) considered are those studied experimentally by M. Pérez-Camacho, J.E. López-Aguilar, F. Calderas, O. Manero, M.F. Webster, J. Non-Newton. Fluid Mech. 222 (2015) 260–271; of α={2, 4, 6, 8, 10}. Their experimental PAA/corn-syrup Boger fluids have been characterized and modelled with the so-called swanINNFM model through dissipative continuum-scale modelling. This facilitates the precise capture of experimental-levels of epd-data (largest epd=O(6) under α = 10 contraction-ratio and sharp corners). The swanINNFM model has already proven capable of reproducing the large excess pressure-drops reported by J.P. Rothstein, G.H. McKinley, J. Non-Newton. Fluid Mech. 98 (2001) 33–63, in their experiments (epd=O(3) for α=4 contraction-ratio and PS/PS Boger fluids); it is also capable of reproducing the Boger-fluid pressure-drop rise, relative to Newtonian-instance, in axisymmetric α=4 contraction-flow, as opposed to the null rise observed in the planar counterpart reported by S. Nigen, K. Walters, J. Non-Newton. Fluid Mech., 102 (2002) 343–359. In the present study, at each contraction-ratio and under De-rise (flow-rate-increase), one may identify two main phases: i) an epd plateauing-region at low deformation-rates, and ii) a sudden epd-rise above the Newtonian unity reference- line. With elevation in contraction-ratio, the first plateaued-epd phase is elongated and the maximum epd-levels rise significantly. Such epd-elevation is captured theoretically and numerically, with counterpart rise in extensional-viscosity. In addition, this position in epd-response correlates well against trends in vortex-dynamics - correctly capturing lip-vortex appearance, lip-vortex and salient-corner vortex co-existence and coalescence, and ultimate elastic corner-vortex domination. In this respect, their presence and transitions, may themselves be linked to increased elastic effects and normal-stress response.
[Display omitted]</description><subject>Axisymmetric flow</subject><subject>Coalescing</subject><subject>Computational fluid dynamics</subject><subject>Continuum modelling</subject><subject>Corn</subject><subject>Deformation</subject><subject>Dissipation</subject><subject>Elevation</subject><subject>Elongation</subject><subject>epd-enhancement and flow-structure matching Boger-fluids, contraction-ratio variation</subject><subject>Expansion & contraction</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid pressure</subject><subject>Lip, salient and elastic corner vortices</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Pressure</subject><subject>SwanINNFM model, numerical simulation</subject><subject>Syrup</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM9u1DAQxi1EJZYtT8DFEudsPXHsZA8c2hVtkSpxoWfL64yLo60dxkkFN56gl75hn6ROlwMnfJk__r4ZzY-xjyA2IECfDZshRn-_qUtROhsh1Bu2gq6VVa0lvGUrIdu2ErVq37H3OQ-iPCX1ij3uUpzIuimkWJEtgT9YCksSuY09Hwn78PrNk-cHS3fI8deIFO4xTvawCHKeCaue0ph5iDz_sDRWLlFE4i6Qm4uNu38WlQE25pLl5z9PF-mu6PxhDn0-ZSfeHjJ--BvX7Pbyy_fddXXz7err7vymck1TT5UF5VFK8J0Ep_3W7msJjdKdVoitslbBVuw1YNep1krtVN3t91r4WjQATso1-3ScO1L6OWOezJBmimWlga3UChqooajkUeUo5UzozVjOtvTbgDALeDOYV_BmAb80F6pr9vnownLAQ0Ay2QWMrnAkdJPpU_iv_wU21ZGI</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>López-Aguilar, J.E.</creator><creator>Webster, M.F.</creator><creator>Tamaddon-Jahromi, H.R.</creator><creator>Pérez-Camacho, M.</creator><creator>Manero, O.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201611</creationdate><title>Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions–Boger fluids</title><author>López-Aguilar, J.E. ; Webster, M.F. ; Tamaddon-Jahromi, H.R. ; Pérez-Camacho, M. ; Manero, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-a15fe331f831c6f9ab231456865ee75aa5190b61e8857a36c528bb60f20411c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Axisymmetric flow</topic><topic>Coalescing</topic><topic>Computational fluid dynamics</topic><topic>Continuum modelling</topic><topic>Corn</topic><topic>Deformation</topic><topic>Dissipation</topic><topic>Elevation</topic><topic>Elongation</topic><topic>epd-enhancement and flow-structure matching Boger-fluids, contraction-ratio variation</topic><topic>Expansion & contraction</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid pressure</topic><topic>Lip, salient and elastic corner vortices</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Pressure</topic><topic>SwanINNFM model, numerical simulation</topic><topic>Syrup</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Aguilar, J.E.</creatorcontrib><creatorcontrib>Webster, M.F.</creatorcontrib><creatorcontrib>Tamaddon-Jahromi, H.R.</creatorcontrib><creatorcontrib>Pérez-Camacho, M.</creatorcontrib><creatorcontrib>Manero, O.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Aguilar, J.E.</au><au>Webster, M.F.</au><au>Tamaddon-Jahromi, H.R.</au><au>Pérez-Camacho, M.</au><au>Manero, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions–Boger fluids</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2016-11</date><risdate>2016</risdate><volume>237</volume><spage>39</spage><epage>53</epage><pages>39-53</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>• Predictive matching of Boger-fluid experiments in circular contraction-expansions.• Flow-transitions predicted for all aspect-ratios (α) and with rise in flow-rate.• Precise capture of enhanced pressure drops, epdmax∼600% (α=10).• α≥6: salient-c/lip-vortex co-existence observed, then dominated by elastic c-vortex.• Tight correspondence in flow-structure between streamline patterns and N1-fields.
This study is concerned with the continuum modelling of sharp-corner contraction-expansion axisymmetric flows, under contraction-ratio variation, and more particularly, in the precise capture of the large-levels of experimental excess pressure-drops (epd) for Boger fluids. The particular contraction-ratios (α) considered are those studied experimentally by M. Pérez-Camacho, J.E. López-Aguilar, F. Calderas, O. Manero, M.F. Webster, J. Non-Newton. Fluid Mech. 222 (2015) 260–271; of α={2, 4, 6, 8, 10}. Their experimental PAA/corn-syrup Boger fluids have been characterized and modelled with the so-called swanINNFM model through dissipative continuum-scale modelling. This facilitates the precise capture of experimental-levels of epd-data (largest epd=O(6) under α = 10 contraction-ratio and sharp corners). The swanINNFM model has already proven capable of reproducing the large excess pressure-drops reported by J.P. Rothstein, G.H. McKinley, J. Non-Newton. Fluid Mech. 98 (2001) 33–63, in their experiments (epd=O(3) for α=4 contraction-ratio and PS/PS Boger fluids); it is also capable of reproducing the Boger-fluid pressure-drop rise, relative to Newtonian-instance, in axisymmetric α=4 contraction-flow, as opposed to the null rise observed in the planar counterpart reported by S. Nigen, K. Walters, J. Non-Newton. Fluid Mech., 102 (2002) 343–359. In the present study, at each contraction-ratio and under De-rise (flow-rate-increase), one may identify two main phases: i) an epd plateauing-region at low deformation-rates, and ii) a sudden epd-rise above the Newtonian unity reference- line. With elevation in contraction-ratio, the first plateaued-epd phase is elongated and the maximum epd-levels rise significantly. Such epd-elevation is captured theoretically and numerically, with counterpart rise in extensional-viscosity. In addition, this position in epd-response correlates well against trends in vortex-dynamics - correctly capturing lip-vortex appearance, lip-vortex and salient-corner vortex co-existence and coalescence, and ultimate elastic corner-vortex domination. In this respect, their presence and transitions, may themselves be linked to increased elastic effects and normal-stress response.
[Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2016.10.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2016-11, Vol.237, p.39-53 |
issn | 0377-0257 1873-2631 |
language | eng |
recordid | cdi_proquest_journals_1936514121 |
source | Elsevier ScienceDirect Journals |
subjects | Axisymmetric flow Coalescing Computational fluid dynamics Continuum modelling Corn Deformation Dissipation Elevation Elongation epd-enhancement and flow-structure matching Boger-fluids, contraction-ratio variation Expansion & contraction Fluid dynamics Fluid flow Fluid pressure Lip, salient and elastic corner vortices Mathematical models Modelling Pressure SwanINNFM model, numerical simulation Syrup Viscosity Vortices |
title | Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions–Boger fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contraction-ratio%20variation%20and%20prediction%20of%20large%20experimental%20pressure-drops%20in%20sharp-corner%20circular%20contraction-expansions%E2%80%93Boger%20fluids&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=L%C3%B3pez-Aguilar,%20J.E.&rft.date=2016-11&rft.volume=237&rft.spage=39&rft.epage=53&rft.pages=39-53&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2016.10.005&rft_dat=%3Cproquest_cross%3E1936514121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936514121&rft_id=info:pmid/&rft_els_id=S0377025716302488&rfr_iscdi=true |