The application of statistical network models in disease research

Summary Host social structure is fundamental to how infections spread and persist, and so the statistical modelling of static and dynamic social networks provides an invaluable tool to parameterise realistic epidemiological models. We present a practical guide to the application of network modelling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2017-09, Vol.8 (9), p.1026-1041
Hauptverfasser: Silk, Matthew J., Croft, Darren P., Delahay, Richard J., Hodgson, David J., Weber, Nicola, Boots, Mike, McDonald, Robbie A., Metcalf, Jessica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue 9
container_start_page 1026
container_title Methods in ecology and evolution
container_volume 8
creator Silk, Matthew J.
Croft, Darren P.
Delahay, Richard J.
Hodgson, David J.
Weber, Nicola
Boots, Mike
McDonald, Robbie A.
Metcalf, Jessica
description Summary Host social structure is fundamental to how infections spread and persist, and so the statistical modelling of static and dynamic social networks provides an invaluable tool to parameterise realistic epidemiological models. We present a practical guide to the application of network modelling frameworks for hypothesis testing related to social interactions and epidemiology, illustrating some approaches with worked examples using data from a population of wild European badgers Meles meles naturally infected with bovine tuberculosis. Different empirical network datasets generate particular statistical issues related to non‐independence and sampling constraints. We therefore discuss the strengths and weaknesses of modelling approaches for different types of network data and for answering different questions relating to disease transmission. We argue that statistical modelling frameworks designed specifically for network analysis offer great potential in directly relating network structure to infection. They have the potential to be powerful tools in analysing empirical contact data used in epidemiological studies, but remain untested for use in networks of spatio‐temporal associations. As a result, we argue that developments in the statistical analysis of empirical contact data are critical given the ready availability of dynamic network data from bio‐logging studies. Furthermore, we encourage improved integration of statistical network approaches into epidemiological research to facilitate the generation of novel modelling frameworks and help extend our understanding of disease transmission in natural populations.
doi_str_mv 10.1111/2041-210X.12770
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1936475533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936475533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4230-8be8512a157985a69cdbd0a0e24c23914b5b1c85870dc6945cb1b83d9a9f13373</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJg0Z69Bjxvm5eP3eRYSv2AipcK3kI2m6Vbt5s12VL6701dEW_OZYZh5j0YhO6AzCBhTgmHjAJ5nwEtCnKBJr_O5R99jaYx7kgCk4pQPkGLzdZh0_dtY83Q-A77GschyTgkp8WdG44-fOC9r1wbcdPhqonORIeDSxzs9hZd1aaNbvrDN-jtYbVZPmXr18fn5WKdWU4ZyWTppABqQBRKCpMrW5UVMcRRbilTwEtRgpVCFqSyueLCllBKVimjamCsYDfofrzbB_95cHHQO38IXXqpQbGcF0IwllLzMWWDjzG4Wveh2Ztw0kD0eSp9HkOfx9DfU6VGPjaOTetO_8X1y2rFxuIX97lp3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936475533</pqid></control><display><type>article</type><title>The application of statistical network models in disease research</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Silk, Matthew J. ; Croft, Darren P. ; Delahay, Richard J. ; Hodgson, David J. ; Weber, Nicola ; Boots, Mike ; McDonald, Robbie A. ; Metcalf, Jessica</creator><contributor>Metcalf, Jessica</contributor><creatorcontrib>Silk, Matthew J. ; Croft, Darren P. ; Delahay, Richard J. ; Hodgson, David J. ; Weber, Nicola ; Boots, Mike ; McDonald, Robbie A. ; Metcalf, Jessica ; Metcalf, Jessica</creatorcontrib><description>Summary Host social structure is fundamental to how infections spread and persist, and so the statistical modelling of static and dynamic social networks provides an invaluable tool to parameterise realistic epidemiological models. We present a practical guide to the application of network modelling frameworks for hypothesis testing related to social interactions and epidemiology, illustrating some approaches with worked examples using data from a population of wild European badgers Meles meles naturally infected with bovine tuberculosis. Different empirical network datasets generate particular statistical issues related to non‐independence and sampling constraints. We therefore discuss the strengths and weaknesses of modelling approaches for different types of network data and for answering different questions relating to disease transmission. We argue that statistical modelling frameworks designed specifically for network analysis offer great potential in directly relating network structure to infection. They have the potential to be powerful tools in analysing empirical contact data used in epidemiological studies, but remain untested for use in networks of spatio‐temporal associations. As a result, we argue that developments in the statistical analysis of empirical contact data are critical given the ready availability of dynamic network data from bio‐logging studies. Furthermore, we encourage improved integration of statistical network approaches into epidemiological research to facilitate the generation of novel modelling frameworks and help extend our understanding of disease transmission in natural populations.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12770</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Badgers ; contact network ; Data logging ; Disease transmission ; Empirical analysis ; Epidemic models ; Epidemiology ; exponential random graph model ; Hypothesis testing ; Infections ; Mathematical models ; Meles meles ; Natural populations ; Network analysis ; network‐based diffusion analysis ; relational event model ; Social conditions ; Social factors ; Social interactions ; Social networks ; Social organization ; Statistical analysis ; Statistical models ; stochastic actor‐oriented model ; temporal network autocorrelation model ; Tuberculosis</subject><ispartof>Methods in ecology and evolution, 2017-09, Vol.8 (9), p.1026-1041</ispartof><rights>2017 The Authors and Crown Copyright. published by John Wiley &amp; Sons Ltd on behalf of British Ecological Society.</rights><rights>Copyright © 2017 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4230-8be8512a157985a69cdbd0a0e24c23914b5b1c85870dc6945cb1b83d9a9f13373</citedby><cites>FETCH-LOGICAL-c4230-8be8512a157985a69cdbd0a0e24c23914b5b1c85870dc6945cb1b83d9a9f13373</cites><orcidid>0000-0002-8318-5383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12770$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12770$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><contributor>Metcalf, Jessica</contributor><creatorcontrib>Silk, Matthew J.</creatorcontrib><creatorcontrib>Croft, Darren P.</creatorcontrib><creatorcontrib>Delahay, Richard J.</creatorcontrib><creatorcontrib>Hodgson, David J.</creatorcontrib><creatorcontrib>Weber, Nicola</creatorcontrib><creatorcontrib>Boots, Mike</creatorcontrib><creatorcontrib>McDonald, Robbie A.</creatorcontrib><creatorcontrib>Metcalf, Jessica</creatorcontrib><title>The application of statistical network models in disease research</title><title>Methods in ecology and evolution</title><description>Summary Host social structure is fundamental to how infections spread and persist, and so the statistical modelling of static and dynamic social networks provides an invaluable tool to parameterise realistic epidemiological models. We present a practical guide to the application of network modelling frameworks for hypothesis testing related to social interactions and epidemiology, illustrating some approaches with worked examples using data from a population of wild European badgers Meles meles naturally infected with bovine tuberculosis. Different empirical network datasets generate particular statistical issues related to non‐independence and sampling constraints. We therefore discuss the strengths and weaknesses of modelling approaches for different types of network data and for answering different questions relating to disease transmission. We argue that statistical modelling frameworks designed specifically for network analysis offer great potential in directly relating network structure to infection. They have the potential to be powerful tools in analysing empirical contact data used in epidemiological studies, but remain untested for use in networks of spatio‐temporal associations. As a result, we argue that developments in the statistical analysis of empirical contact data are critical given the ready availability of dynamic network data from bio‐logging studies. Furthermore, we encourage improved integration of statistical network approaches into epidemiological research to facilitate the generation of novel modelling frameworks and help extend our understanding of disease transmission in natural populations.</description><subject>Badgers</subject><subject>contact network</subject><subject>Data logging</subject><subject>Disease transmission</subject><subject>Empirical analysis</subject><subject>Epidemic models</subject><subject>Epidemiology</subject><subject>exponential random graph model</subject><subject>Hypothesis testing</subject><subject>Infections</subject><subject>Mathematical models</subject><subject>Meles meles</subject><subject>Natural populations</subject><subject>Network analysis</subject><subject>network‐based diffusion analysis</subject><subject>relational event model</subject><subject>Social conditions</subject><subject>Social factors</subject><subject>Social interactions</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>stochastic actor‐oriented model</subject><subject>temporal network autocorrelation model</subject><subject>Tuberculosis</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUE1LAzEUDKJg0Z69Bjxvm5eP3eRYSv2AipcK3kI2m6Vbt5s12VL6701dEW_OZYZh5j0YhO6AzCBhTgmHjAJ5nwEtCnKBJr_O5R99jaYx7kgCk4pQPkGLzdZh0_dtY83Q-A77GschyTgkp8WdG44-fOC9r1wbcdPhqonORIeDSxzs9hZd1aaNbvrDN-jtYbVZPmXr18fn5WKdWU4ZyWTppABqQBRKCpMrW5UVMcRRbilTwEtRgpVCFqSyueLCllBKVimjamCsYDfofrzbB_95cHHQO38IXXqpQbGcF0IwllLzMWWDjzG4Wveh2Ztw0kD0eSp9HkOfx9DfU6VGPjaOTetO_8X1y2rFxuIX97lp3Q</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Silk, Matthew J.</creator><creator>Croft, Darren P.</creator><creator>Delahay, Richard J.</creator><creator>Hodgson, David J.</creator><creator>Weber, Nicola</creator><creator>Boots, Mike</creator><creator>McDonald, Robbie A.</creator><creator>Metcalf, Jessica</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8318-5383</orcidid></search><sort><creationdate>201709</creationdate><title>The application of statistical network models in disease research</title><author>Silk, Matthew J. ; Croft, Darren P. ; Delahay, Richard J. ; Hodgson, David J. ; Weber, Nicola ; Boots, Mike ; McDonald, Robbie A. ; Metcalf, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4230-8be8512a157985a69cdbd0a0e24c23914b5b1c85870dc6945cb1b83d9a9f13373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Badgers</topic><topic>contact network</topic><topic>Data logging</topic><topic>Disease transmission</topic><topic>Empirical analysis</topic><topic>Epidemic models</topic><topic>Epidemiology</topic><topic>exponential random graph model</topic><topic>Hypothesis testing</topic><topic>Infections</topic><topic>Mathematical models</topic><topic>Meles meles</topic><topic>Natural populations</topic><topic>Network analysis</topic><topic>network‐based diffusion analysis</topic><topic>relational event model</topic><topic>Social conditions</topic><topic>Social factors</topic><topic>Social interactions</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>stochastic actor‐oriented model</topic><topic>temporal network autocorrelation model</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silk, Matthew J.</creatorcontrib><creatorcontrib>Croft, Darren P.</creatorcontrib><creatorcontrib>Delahay, Richard J.</creatorcontrib><creatorcontrib>Hodgson, David J.</creatorcontrib><creatorcontrib>Weber, Nicola</creatorcontrib><creatorcontrib>Boots, Mike</creatorcontrib><creatorcontrib>McDonald, Robbie A.</creatorcontrib><creatorcontrib>Metcalf, Jessica</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silk, Matthew J.</au><au>Croft, Darren P.</au><au>Delahay, Richard J.</au><au>Hodgson, David J.</au><au>Weber, Nicola</au><au>Boots, Mike</au><au>McDonald, Robbie A.</au><au>Metcalf, Jessica</au><au>Metcalf, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of statistical network models in disease research</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2017-09</date><risdate>2017</risdate><volume>8</volume><issue>9</issue><spage>1026</spage><epage>1041</epage><pages>1026-1041</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Summary Host social structure is fundamental to how infections spread and persist, and so the statistical modelling of static and dynamic social networks provides an invaluable tool to parameterise realistic epidemiological models. We present a practical guide to the application of network modelling frameworks for hypothesis testing related to social interactions and epidemiology, illustrating some approaches with worked examples using data from a population of wild European badgers Meles meles naturally infected with bovine tuberculosis. Different empirical network datasets generate particular statistical issues related to non‐independence and sampling constraints. We therefore discuss the strengths and weaknesses of modelling approaches for different types of network data and for answering different questions relating to disease transmission. We argue that statistical modelling frameworks designed specifically for network analysis offer great potential in directly relating network structure to infection. They have the potential to be powerful tools in analysing empirical contact data used in epidemiological studies, but remain untested for use in networks of spatio‐temporal associations. As a result, we argue that developments in the statistical analysis of empirical contact data are critical given the ready availability of dynamic network data from bio‐logging studies. Furthermore, we encourage improved integration of statistical network approaches into epidemiological research to facilitate the generation of novel modelling frameworks and help extend our understanding of disease transmission in natural populations.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.12770</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8318-5383</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2017-09, Vol.8 (9), p.1026-1041
issn 2041-210X
2041-210X
language eng
recordid cdi_proquest_journals_1936475533
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Badgers
contact network
Data logging
Disease transmission
Empirical analysis
Epidemic models
Epidemiology
exponential random graph model
Hypothesis testing
Infections
Mathematical models
Meles meles
Natural populations
Network analysis
network‐based diffusion analysis
relational event model
Social conditions
Social factors
Social interactions
Social networks
Social organization
Statistical analysis
Statistical models
stochastic actor‐oriented model
temporal network autocorrelation model
Tuberculosis
title The application of statistical network models in disease research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20statistical%20network%20models%20in%20disease%20research&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Silk,%20Matthew%20J.&rft.date=2017-09&rft.volume=8&rft.issue=9&rft.spage=1026&rft.epage=1041&rft.pages=1026-1041&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12770&rft_dat=%3Cproquest_cross%3E1936475533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936475533&rft_id=info:pmid/&rfr_iscdi=true