Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels

The present paper aims to develop an automatical strategy for generating accurate different-scale microstructures of human tooth enamels (HTEs), and to elaborate a numerical scheme for simulating their elastic responses. At first, the strong governing formulation of these microstructures is briefly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2017-09, Vol.60 (9), p.1381-1399
Hauptverfasser: Liu, Tao, Deng, Qiang, Yang, Dan, Zheng, Jing, Liu, JianTao, Zhou, ZhongRong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1399
container_issue 9
container_start_page 1381
container_title Science China. Technological sciences
container_volume 60
creator Liu, Tao
Deng, Qiang
Yang, Dan
Zheng, Jing
Liu, JianTao
Zhou, ZhongRong
description The present paper aims to develop an automatical strategy for generating accurate different-scale microstructures of human tooth enamels (HTEs), and to elaborate a numerical scheme for simulating their elastic responses. At first, the strong governing formulation of these microstructures is briefly constructed, and the relevant weak formulation is then deduced based on the virtual work theorem. Afterwards, a subdividing approach, which cuts the elements intercepted by the interfaces between distinct phases automatically, is established with the aid of the level set method (LSM), and the discrete counterpart of the governing formula is obtained by combining the weak formulation derived and a discretized model. To be noted, two silent merits are found when the elaborated strategy is applied: (1) the continents constituting the microstructures of different scales can be arbitrarily-shaped and conveniently reproduced; (2) the periodic boundary condition commonly employed can be enforced on the external surfaces of representative unit cells (RUCs) with no difficulty. Besides, a boundary value problem (BVP) involving a simplified HTE nanostructure is designed, analytically solved, and hereafter applied to verify the correctness of the proposed strategy. It is observed that both the displacement and stress predictions by the computational approach are in good agreement with the relevant analytical results irrespective of the material combinations applied. Eventually, discussions are made on the influence of material organizations of both the 2D and 3D HTE microstructures at the ultrastructural and repeated rod levels, and some concluding remarks are drawn.
doi_str_mv 10.1007/s11431-016-9006-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1936253414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673125785</cqvip_id><sourcerecordid>1936253414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a59a58b691dbf1e355bc81b421b2721edf783efbfa15f4a80e461e62127048ec3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoKOt-AG9Bz9FMkqbtUcR_IHjRc0i7k91Km2iSIn57U1bEk3PJBH7vveERcgb8EjivrxKAksA4aNZyrpk6ICfQ6JZB-R6WXdeK1VLAMVmn9MbLyKbloE5Iup5zmGweejqFDY6D39Ictph3GOnnkHfUzxPGobcjTcM0jwUNngZHC0E3g3MY0WeWCoB0GvoYUo5zn-eIacF282R9sQzFCr2dcEyn5MjZMeH6512R17vbl5sH9vR8_3hz_cR6qWRmtmpt1XS6hU3nAGVVdX0DnRLQiVoAblzdSHSds1A5ZRuOSgNqAaLmqsFersjF3vc9ho8ZUzZvYY6-RBpopRaVVKW3FYE9tZyeIjrzHofJxi8D3Cz1mn29ptRrlnrNohF7TSqs32L84_yP6PwnaBf89qPofpN0LUFUdVPJbxMLiqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936253414</pqid></control><display><type>article</type><title>Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Tao ; Deng, Qiang ; Yang, Dan ; Zheng, Jing ; Liu, JianTao ; Zhou, ZhongRong</creator><creatorcontrib>Liu, Tao ; Deng, Qiang ; Yang, Dan ; Zheng, Jing ; Liu, JianTao ; Zhou, ZhongRong</creatorcontrib><description>The present paper aims to develop an automatical strategy for generating accurate different-scale microstructures of human tooth enamels (HTEs), and to elaborate a numerical scheme for simulating their elastic responses. At first, the strong governing formulation of these microstructures is briefly constructed, and the relevant weak formulation is then deduced based on the virtual work theorem. Afterwards, a subdividing approach, which cuts the elements intercepted by the interfaces between distinct phases automatically, is established with the aid of the level set method (LSM), and the discrete counterpart of the governing formula is obtained by combining the weak formulation derived and a discretized model. To be noted, two silent merits are found when the elaborated strategy is applied: (1) the continents constituting the microstructures of different scales can be arbitrarily-shaped and conveniently reproduced; (2) the periodic boundary condition commonly employed can be enforced on the external surfaces of representative unit cells (RUCs) with no difficulty. Besides, a boundary value problem (BVP) involving a simplified HTE nanostructure is designed, analytically solved, and hereafter applied to verify the correctness of the proposed strategy. It is observed that both the displacement and stress predictions by the computational approach are in good agreement with the relevant analytical results irrespective of the material combinations applied. Eventually, discussions are made on the influence of material organizations of both the 2D and 3D HTE microstructures at the ultrastructural and repeated rod levels, and some concluding remarks are drawn.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-016-9006-4</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Boundary value problems ; Computer simulation ; Continents ; Dental enamel ; Engineering ; Mathematical analysis ; Mathematical models ; Strategy ; Teeth ; 周期性边界条件 ; 弹性响应 ; 数值模拟 ; 显微结构 ; 材料组织 ; 水平集方法 ; 离散模型 ; 自动建模</subject><ispartof>Science China. Technological sciences, 2017-09, Vol.60 (9), p.1381-1399</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a59a58b691dbf1e355bc81b421b2721edf783efbfa15f4a80e461e62127048ec3</citedby><cites>FETCH-LOGICAL-c343t-a59a58b691dbf1e355bc81b421b2721edf783efbfa15f4a80e461e62127048ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60110X/60110X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-016-9006-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-016-9006-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Deng, Qiang</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Liu, JianTao</creatorcontrib><creatorcontrib>Zhou, ZhongRong</creatorcontrib><title>Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><addtitle>SCIENCE CHINA Technological Sciences</addtitle><description>The present paper aims to develop an automatical strategy for generating accurate different-scale microstructures of human tooth enamels (HTEs), and to elaborate a numerical scheme for simulating their elastic responses. At first, the strong governing formulation of these microstructures is briefly constructed, and the relevant weak formulation is then deduced based on the virtual work theorem. Afterwards, a subdividing approach, which cuts the elements intercepted by the interfaces between distinct phases automatically, is established with the aid of the level set method (LSM), and the discrete counterpart of the governing formula is obtained by combining the weak formulation derived and a discretized model. To be noted, two silent merits are found when the elaborated strategy is applied: (1) the continents constituting the microstructures of different scales can be arbitrarily-shaped and conveniently reproduced; (2) the periodic boundary condition commonly employed can be enforced on the external surfaces of representative unit cells (RUCs) with no difficulty. Besides, a boundary value problem (BVP) involving a simplified HTE nanostructure is designed, analytically solved, and hereafter applied to verify the correctness of the proposed strategy. It is observed that both the displacement and stress predictions by the computational approach are in good agreement with the relevant analytical results irrespective of the material combinations applied. Eventually, discussions are made on the influence of material organizations of both the 2D and 3D HTE microstructures at the ultrastructural and repeated rod levels, and some concluding remarks are drawn.</description><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Continents</subject><subject>Dental enamel</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Strategy</subject><subject>Teeth</subject><subject>周期性边界条件</subject><subject>弹性响应</subject><subject>数值模拟</subject><subject>显微结构</subject><subject>材料组织</subject><subject>水平集方法</subject><subject>离散模型</subject><subject>自动建模</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoKOt-AG9Bz9FMkqbtUcR_IHjRc0i7k91Km2iSIn57U1bEk3PJBH7vveERcgb8EjivrxKAksA4aNZyrpk6ICfQ6JZB-R6WXdeK1VLAMVmn9MbLyKbloE5Iup5zmGweejqFDY6D39Ictph3GOnnkHfUzxPGobcjTcM0jwUNngZHC0E3g3MY0WeWCoB0GvoYUo5zn-eIacF282R9sQzFCr2dcEyn5MjZMeH6512R17vbl5sH9vR8_3hz_cR6qWRmtmpt1XS6hU3nAGVVdX0DnRLQiVoAblzdSHSds1A5ZRuOSgNqAaLmqsFersjF3vc9ho8ZUzZvYY6-RBpopRaVVKW3FYE9tZyeIjrzHofJxi8D3Cz1mn29ptRrlnrNohF7TSqs32L84_yP6PwnaBf89qPofpN0LUFUdVPJbxMLiqw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Liu, Tao</creator><creator>Deng, Qiang</creator><creator>Yang, Dan</creator><creator>Zheng, Jing</creator><creator>Liu, JianTao</creator><creator>Zhou, ZhongRong</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels</title><author>Liu, Tao ; Deng, Qiang ; Yang, Dan ; Zheng, Jing ; Liu, JianTao ; Zhou, ZhongRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a59a58b691dbf1e355bc81b421b2721edf783efbfa15f4a80e461e62127048ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Continents</topic><topic>Dental enamel</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Strategy</topic><topic>Teeth</topic><topic>周期性边界条件</topic><topic>弹性响应</topic><topic>数值模拟</topic><topic>显微结构</topic><topic>材料组织</topic><topic>水平集方法</topic><topic>离散模型</topic><topic>自动建模</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Deng, Qiang</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Liu, JianTao</creatorcontrib><creatorcontrib>Zhou, ZhongRong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tao</au><au>Deng, Qiang</au><au>Yang, Dan</au><au>Zheng, Jing</au><au>Liu, JianTao</au><au>Zhou, ZhongRong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><addtitle>SCIENCE CHINA Technological Sciences</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>60</volume><issue>9</issue><spage>1381</spage><epage>1399</epage><pages>1381-1399</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>The present paper aims to develop an automatical strategy for generating accurate different-scale microstructures of human tooth enamels (HTEs), and to elaborate a numerical scheme for simulating their elastic responses. At first, the strong governing formulation of these microstructures is briefly constructed, and the relevant weak formulation is then deduced based on the virtual work theorem. Afterwards, a subdividing approach, which cuts the elements intercepted by the interfaces between distinct phases automatically, is established with the aid of the level set method (LSM), and the discrete counterpart of the governing formula is obtained by combining the weak formulation derived and a discretized model. To be noted, two silent merits are found when the elaborated strategy is applied: (1) the continents constituting the microstructures of different scales can be arbitrarily-shaped and conveniently reproduced; (2) the periodic boundary condition commonly employed can be enforced on the external surfaces of representative unit cells (RUCs) with no difficulty. Besides, a boundary value problem (BVP) involving a simplified HTE nanostructure is designed, analytically solved, and hereafter applied to verify the correctness of the proposed strategy. It is observed that both the displacement and stress predictions by the computational approach are in good agreement with the relevant analytical results irrespective of the material combinations applied. Eventually, discussions are made on the influence of material organizations of both the 2D and 3D HTE microstructures at the ultrastructural and repeated rod levels, and some concluding remarks are drawn.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-016-9006-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2017-09, Vol.60 (9), p.1381-1399
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_1936253414
source SpringerLink Journals; Alma/SFX Local Collection
subjects Boundary value problems
Computer simulation
Continents
Dental enamel
Engineering
Mathematical analysis
Mathematical models
Strategy
Teeth
周期性边界条件
弹性响应
数值模拟
显微结构
材料组织
水平集方法
离散模型
自动建模
title Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20modeling%20together%20with%20numerical%20simulation%20of%20the%20different-scale%20microstructures%20of%20human%20tooth%20enamels&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Liu,%20Tao&rft.date=2017-09-01&rft.volume=60&rft.issue=9&rft.spage=1381&rft.epage=1399&rft.pages=1381-1399&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-016-9006-4&rft_dat=%3Cproquest_cross%3E1936253414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936253414&rft_id=info:pmid/&rft_cqvip_id=673125785&rfr_iscdi=true