Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism

[Display omitted] •The interface is shown to play a key role in photocatalysis on ZnO/TiO2 core-shell system.•Additional calcination at 450°C strongly improves photocatalytic properties of ZnO/TiO2 system.•Upon calcination at 450°C voids are formed and Zn is incorporated into TiO2 (Kirkendall effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2017-05, Vol.204, p.200-208
Hauptverfasser: Kwiatkowski, Maciej, Chassagnon, Rémi, Heintz, Olivier, Geoffroy, Nicolas, Skompska, Magdalena, Bezverkhyy, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue
container_start_page 200
container_title Applied catalysis. B, Environmental
container_volume 204
creator Kwiatkowski, Maciej
Chassagnon, Rémi
Heintz, Olivier
Geoffroy, Nicolas
Skompska, Magdalena
Bezverkhyy, Igor
description [Display omitted] •The interface is shown to play a key role in photocatalysis on ZnO/TiO2 core-shell system.•Additional calcination at 450°C strongly improves photocatalytic properties of ZnO/TiO2 system.•Upon calcination at 450°C voids are formed and Zn is incorporated into TiO2 (Kirkendall effect).•Kirkendall’s modification at ZnO/TiO2 boundary inhibits the electron-hole recombination.•Correlated slower e−/h+ recombination raises rate of MB decomposition by 40% and 2-times current in H2O oxidation. ZnO/TiO2 composites were prepared by sol-gel deposition of TiO2 on ZnO nanorods hydrothermally grown on electrically conductive indium tin oxide substrate (ITO). It has been shown that the ZnO/TiO2 interface plays a key role in enhancement of photodecomposition of methylene blue (MB) used as a model test pollutant, under monochromatic light irradiation (400nm). The increase of photocatalytic activity was attributed to the shift of absorption edge of ZnO/TiO2 towards visible light in comparison with bare TiO2. Further enhancement of photocatalytic activity of ZnO/TiO2 was achieved through its additional calcination at 450°C for 3h. This treatment brings 40% increase in the rate of MB decomposition and a two-fold rise of the photocurrent in H2O oxidation. Measurements of open circuit potential (Voc) showed that the improved properties of additionally calcined ZnO/TiO2 composites stem from decrease of the electron-hole recombination rate. Scanning transmission electron microscopy (STEM) studies showed that the additional calcination resulted in formation of voids at the ZnO/TiO2 interface. Energy dispersive X-ray (EDX) and X-ray photoelectron (XPS) spectroscopies proved that formation of voids is accompanied by the outward diffusion of Zn ions into TiO2 layer and allowed to conclude about the existence of the Kirkendall effect at ZnO/TiO2 interface. Occurrence of this effect observed for the first time at such moderate temperature (450°C) is attributed to a highly defective nature of the surface layer of the ZnO nanorods.
doi_str_mv 10.1016/j.apcatb.2016.11.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1936245424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337316308888</els_id><sourcerecordid>1936245424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-7dfaab879cab659dd9d3e2242d4ba582498d76326b80284589b5a790e0d504673</originalsourceid><addsrcrecordid>eNp9kc-K2zAQxkXZQrPZvkEPgp7t6J9tuYfCsuy2gYVcdi-9CFmaxAq2lEpKIG_Sx62Ce-5pmOH7fczMh9AXSmpKaLs51vpkdB5qVrqa0ppw8gGtqOx4xaXkd2hFetZWnHf8E7pP6UgIYZzJFfqznU8xXGAGn3HY49MYciheerpmZ7D2dhnBBCbHYEaYndET1ia7i8vXG_PL7zZvbsewCRE2aYRpwumaMsw4jzGcDyPW1rrsgi9koY3z-tZ9w1uf3GHM2PkcihjwDGbU3qX5AX3c6ynB5391jd5fnt-eflavux_bp8fXyvCO5qqze60H2fVGD23TW9tbDowJZsWgG8lEL23XctYOkjApGtkPje56AsQ2RLQdX6Ovi295w-8zpKyO4RzLoknRnrdMNIKJohKLysSQUoS9OkU363hVlKhbBuqolgzULQNFqSoZFOz7gkG54OIgqmQceAPWxfJPZYP7v8Ff20OUvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936245424</pqid></control><display><type>article</type><title>Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism</title><source>Elsevier ScienceDirect Journals</source><creator>Kwiatkowski, Maciej ; Chassagnon, Rémi ; Heintz, Olivier ; Geoffroy, Nicolas ; Skompska, Magdalena ; Bezverkhyy, Igor</creator><creatorcontrib>Kwiatkowski, Maciej ; Chassagnon, Rémi ; Heintz, Olivier ; Geoffroy, Nicolas ; Skompska, Magdalena ; Bezverkhyy, Igor</creatorcontrib><description>[Display omitted] •The interface is shown to play a key role in photocatalysis on ZnO/TiO2 core-shell system.•Additional calcination at 450°C strongly improves photocatalytic properties of ZnO/TiO2 system.•Upon calcination at 450°C voids are formed and Zn is incorporated into TiO2 (Kirkendall effect).•Kirkendall’s modification at ZnO/TiO2 boundary inhibits the electron-hole recombination.•Correlated slower e−/h+ recombination raises rate of MB decomposition by 40% and 2-times current in H2O oxidation. ZnO/TiO2 composites were prepared by sol-gel deposition of TiO2 on ZnO nanorods hydrothermally grown on electrically conductive indium tin oxide substrate (ITO). It has been shown that the ZnO/TiO2 interface plays a key role in enhancement of photodecomposition of methylene blue (MB) used as a model test pollutant, under monochromatic light irradiation (400nm). The increase of photocatalytic activity was attributed to the shift of absorption edge of ZnO/TiO2 towards visible light in comparison with bare TiO2. Further enhancement of photocatalytic activity of ZnO/TiO2 was achieved through its additional calcination at 450°C for 3h. This treatment brings 40% increase in the rate of MB decomposition and a two-fold rise of the photocurrent in H2O oxidation. Measurements of open circuit potential (Voc) showed that the improved properties of additionally calcined ZnO/TiO2 composites stem from decrease of the electron-hole recombination rate. Scanning transmission electron microscopy (STEM) studies showed that the additional calcination resulted in formation of voids at the ZnO/TiO2 interface. Energy dispersive X-ray (EDX) and X-ray photoelectron (XPS) spectroscopies proved that formation of voids is accompanied by the outward diffusion of Zn ions into TiO2 layer and allowed to conclude about the existence of the Kirkendall effect at ZnO/TiO2 interface. Occurrence of this effect observed for the first time at such moderate temperature (450°C) is attributed to a highly defective nature of the surface layer of the ZnO nanorods.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2016.11.030</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalytic activity ; Decomposition reactions ; Diffusion layers ; Electrical resistivity ; Electron microscopy ; Indium tin oxides ; Irradiation ; Kirkendall effect ; Light irradiation ; Light pollution ; Methylene blue ; Nanocomposites ; Nanorods ; Open circuit voltage ; Oxidation ; Photocatalysis ; Photodecomposition ; Photoelectric effect ; Photoelectric emission ; Photoelectrochemistry ; Pollutants ; Recombination ; Roasting ; Scanning transmission electron microscopy ; Sol-gel processes ; Surface layers ; The Kirkendall effect ; Tin ; Titanium catalysts ; Titanium dioxide ; Transmission electron microscopy ; X ray photoelectron spectroscopy ; Zinc ; Zinc oxide ; Zinc oxides</subject><ispartof>Applied catalysis. B, Environmental, 2017-05, Vol.204, p.200-208</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-7dfaab879cab659dd9d3e2242d4ba582498d76326b80284589b5a790e0d504673</citedby><cites>FETCH-LOGICAL-c371t-7dfaab879cab659dd9d3e2242d4ba582498d76326b80284589b5a790e0d504673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337316308888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kwiatkowski, Maciej</creatorcontrib><creatorcontrib>Chassagnon, Rémi</creatorcontrib><creatorcontrib>Heintz, Olivier</creatorcontrib><creatorcontrib>Geoffroy, Nicolas</creatorcontrib><creatorcontrib>Skompska, Magdalena</creatorcontrib><creatorcontrib>Bezverkhyy, Igor</creatorcontrib><title>Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •The interface is shown to play a key role in photocatalysis on ZnO/TiO2 core-shell system.•Additional calcination at 450°C strongly improves photocatalytic properties of ZnO/TiO2 system.•Upon calcination at 450°C voids are formed and Zn is incorporated into TiO2 (Kirkendall effect).•Kirkendall’s modification at ZnO/TiO2 boundary inhibits the electron-hole recombination.•Correlated slower e−/h+ recombination raises rate of MB decomposition by 40% and 2-times current in H2O oxidation. ZnO/TiO2 composites were prepared by sol-gel deposition of TiO2 on ZnO nanorods hydrothermally grown on electrically conductive indium tin oxide substrate (ITO). It has been shown that the ZnO/TiO2 interface plays a key role in enhancement of photodecomposition of methylene blue (MB) used as a model test pollutant, under monochromatic light irradiation (400nm). The increase of photocatalytic activity was attributed to the shift of absorption edge of ZnO/TiO2 towards visible light in comparison with bare TiO2. Further enhancement of photocatalytic activity of ZnO/TiO2 was achieved through its additional calcination at 450°C for 3h. This treatment brings 40% increase in the rate of MB decomposition and a two-fold rise of the photocurrent in H2O oxidation. Measurements of open circuit potential (Voc) showed that the improved properties of additionally calcined ZnO/TiO2 composites stem from decrease of the electron-hole recombination rate. Scanning transmission electron microscopy (STEM) studies showed that the additional calcination resulted in formation of voids at the ZnO/TiO2 interface. Energy dispersive X-ray (EDX) and X-ray photoelectron (XPS) spectroscopies proved that formation of voids is accompanied by the outward diffusion of Zn ions into TiO2 layer and allowed to conclude about the existence of the Kirkendall effect at ZnO/TiO2 interface. Occurrence of this effect observed for the first time at such moderate temperature (450°C) is attributed to a highly defective nature of the surface layer of the ZnO nanorods.</description><subject>Catalytic activity</subject><subject>Decomposition reactions</subject><subject>Diffusion layers</subject><subject>Electrical resistivity</subject><subject>Electron microscopy</subject><subject>Indium tin oxides</subject><subject>Irradiation</subject><subject>Kirkendall effect</subject><subject>Light irradiation</subject><subject>Light pollution</subject><subject>Methylene blue</subject><subject>Nanocomposites</subject><subject>Nanorods</subject><subject>Open circuit voltage</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photodecomposition</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrochemistry</subject><subject>Pollutants</subject><subject>Recombination</subject><subject>Roasting</subject><subject>Scanning transmission electron microscopy</subject><subject>Sol-gel processes</subject><subject>Surface layers</subject><subject>The Kirkendall effect</subject><subject>Tin</subject><subject>Titanium catalysts</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc-K2zAQxkXZQrPZvkEPgp7t6J9tuYfCsuy2gYVcdi-9CFmaxAq2lEpKIG_Sx62Ce-5pmOH7fczMh9AXSmpKaLs51vpkdB5qVrqa0ppw8gGtqOx4xaXkd2hFetZWnHf8E7pP6UgIYZzJFfqznU8xXGAGn3HY49MYciheerpmZ7D2dhnBBCbHYEaYndET1ia7i8vXG_PL7zZvbsewCRE2aYRpwumaMsw4jzGcDyPW1rrsgi9koY3z-tZ9w1uf3GHM2PkcihjwDGbU3qX5AX3c6ynB5391jd5fnt-eflavux_bp8fXyvCO5qqze60H2fVGD23TW9tbDowJZsWgG8lEL23XctYOkjApGtkPje56AsQ2RLQdX6Ovi295w-8zpKyO4RzLoknRnrdMNIKJohKLysSQUoS9OkU363hVlKhbBuqolgzULQNFqSoZFOz7gkG54OIgqmQceAPWxfJPZYP7v8Ff20OUvw</recordid><startdate>20170505</startdate><enddate>20170505</enddate><creator>Kwiatkowski, Maciej</creator><creator>Chassagnon, Rémi</creator><creator>Heintz, Olivier</creator><creator>Geoffroy, Nicolas</creator><creator>Skompska, Magdalena</creator><creator>Bezverkhyy, Igor</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170505</creationdate><title>Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism</title><author>Kwiatkowski, Maciej ; Chassagnon, Rémi ; Heintz, Olivier ; Geoffroy, Nicolas ; Skompska, Magdalena ; Bezverkhyy, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-7dfaab879cab659dd9d3e2242d4ba582498d76326b80284589b5a790e0d504673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalytic activity</topic><topic>Decomposition reactions</topic><topic>Diffusion layers</topic><topic>Electrical resistivity</topic><topic>Electron microscopy</topic><topic>Indium tin oxides</topic><topic>Irradiation</topic><topic>Kirkendall effect</topic><topic>Light irradiation</topic><topic>Light pollution</topic><topic>Methylene blue</topic><topic>Nanocomposites</topic><topic>Nanorods</topic><topic>Open circuit voltage</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photodecomposition</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrochemistry</topic><topic>Pollutants</topic><topic>Recombination</topic><topic>Roasting</topic><topic>Scanning transmission electron microscopy</topic><topic>Sol-gel processes</topic><topic>Surface layers</topic><topic>The Kirkendall effect</topic><topic>Tin</topic><topic>Titanium catalysts</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwiatkowski, Maciej</creatorcontrib><creatorcontrib>Chassagnon, Rémi</creatorcontrib><creatorcontrib>Heintz, Olivier</creatorcontrib><creatorcontrib>Geoffroy, Nicolas</creatorcontrib><creatorcontrib>Skompska, Magdalena</creatorcontrib><creatorcontrib>Bezverkhyy, Igor</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwiatkowski, Maciej</au><au>Chassagnon, Rémi</au><au>Heintz, Olivier</au><au>Geoffroy, Nicolas</au><au>Skompska, Magdalena</au><au>Bezverkhyy, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2017-05-05</date><risdate>2017</risdate><volume>204</volume><spage>200</spage><epage>208</epage><pages>200-208</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •The interface is shown to play a key role in photocatalysis on ZnO/TiO2 core-shell system.•Additional calcination at 450°C strongly improves photocatalytic properties of ZnO/TiO2 system.•Upon calcination at 450°C voids are formed and Zn is incorporated into TiO2 (Kirkendall effect).•Kirkendall’s modification at ZnO/TiO2 boundary inhibits the electron-hole recombination.•Correlated slower e−/h+ recombination raises rate of MB decomposition by 40% and 2-times current in H2O oxidation. ZnO/TiO2 composites were prepared by sol-gel deposition of TiO2 on ZnO nanorods hydrothermally grown on electrically conductive indium tin oxide substrate (ITO). It has been shown that the ZnO/TiO2 interface plays a key role in enhancement of photodecomposition of methylene blue (MB) used as a model test pollutant, under monochromatic light irradiation (400nm). The increase of photocatalytic activity was attributed to the shift of absorption edge of ZnO/TiO2 towards visible light in comparison with bare TiO2. Further enhancement of photocatalytic activity of ZnO/TiO2 was achieved through its additional calcination at 450°C for 3h. This treatment brings 40% increase in the rate of MB decomposition and a two-fold rise of the photocurrent in H2O oxidation. Measurements of open circuit potential (Voc) showed that the improved properties of additionally calcined ZnO/TiO2 composites stem from decrease of the electron-hole recombination rate. Scanning transmission electron microscopy (STEM) studies showed that the additional calcination resulted in formation of voids at the ZnO/TiO2 interface. Energy dispersive X-ray (EDX) and X-ray photoelectron (XPS) spectroscopies proved that formation of voids is accompanied by the outward diffusion of Zn ions into TiO2 layer and allowed to conclude about the existence of the Kirkendall effect at ZnO/TiO2 interface. Occurrence of this effect observed for the first time at such moderate temperature (450°C) is attributed to a highly defective nature of the surface layer of the ZnO nanorods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2016.11.030</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2017-05, Vol.204, p.200-208
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_1936245424
source Elsevier ScienceDirect Journals
subjects Catalytic activity
Decomposition reactions
Diffusion layers
Electrical resistivity
Electron microscopy
Indium tin oxides
Irradiation
Kirkendall effect
Light irradiation
Light pollution
Methylene blue
Nanocomposites
Nanorods
Open circuit voltage
Oxidation
Photocatalysis
Photodecomposition
Photoelectric effect
Photoelectric emission
Photoelectrochemistry
Pollutants
Recombination
Roasting
Scanning transmission electron microscopy
Sol-gel processes
Surface layers
The Kirkendall effect
Tin
Titanium catalysts
Titanium dioxide
Transmission electron microscopy
X ray photoelectron spectroscopy
Zinc
Zinc oxide
Zinc oxides
title Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20photocatalytic%20and%20photoelectrochemical%20activity%20of%20ZnO/TiO2%20core/shell%20system%20through%20additional%20calcination:%20Insight%20into%20the%20mechanism&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Kwiatkowski,%20Maciej&rft.date=2017-05-05&rft.volume=204&rft.spage=200&rft.epage=208&rft.pages=200-208&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2016.11.030&rft_dat=%3Cproquest_cross%3E1936245424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936245424&rft_id=info:pmid/&rft_els_id=S0926337316308888&rfr_iscdi=true