Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks
In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The proces...
Gespeichert in:
Veröffentlicht in: | Annalen der Physik 2017-09, Vol.529 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Annalen der Physik |
container_volume | 529 |
creator | Kang, Yi‐Hao Shi, Zhi‐Cheng Huang, Bi‐Hua Song, Jie Xia, Yan |
description | In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks.
The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. |
doi_str_mv | 10.1002/andp.201700154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935891306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935891306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWLRb1wHXrTePeWRZqtVCqa-6chEyMxmZOk3GZELpvzdlRJeu7rlwvns5B6ErAlMCQG-UqbopBZIBkISfoBFJKJmwPBenaAQALGrg52js_TaukAAFykfofaF8jyONX2wRonwOyvRhh5emtm6n-sYavHHK-Fo73Bg8Mya0yg2IqhrV4tfQaVdaU4Wyb8wHXut-b92nv0RntWq9Hv_MC_S2uNvMHyarx_vlfLaalCxnfCJ4ylMCtCA6LwvgtQLOsyot6zTPdKZ0lfFcC8pFDYyoVBWsiplLwSpOWErZBboe7nbOfgXte7m1wZn4UhLBklwQBml0TQdX6az3Tteyc81OuYMkII8dymOH8rfDCIgB2DetPvzjlrP17dMf-w3Hl3Tt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935891306</pqid></control><display><type>article</type><title>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</title><source>Wiley Journals</source><creator>Kang, Yi‐Hao ; Shi, Zhi‐Cheng ; Huang, Bi‐Hua ; Song, Jie ; Xia, Yan</creator><creatorcontrib>Kang, Yi‐Hao ; Shi, Zhi‐Cheng ; Huang, Bi‐Hua ; Song, Jie ; Xia, Yan</creatorcontrib><description>In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks.
The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201700154</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adiabatic flow ; Computer simulation ; Coplanar waveguides ; Information transfer ; Networks ; Quantum phenomena ; Quantum theory ; Robustness (mathematics) ; Shortcuts to adiabaticity ; Superconducting network ; Superconducting quantum interference device ; Superconducting quantum interference devices ; Superconductivity ; Superconductors</subject><ispartof>Annalen der Physik, 2017-09, Vol.529 (9), p.n/a</ispartof><rights>2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</citedby><cites>FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201700154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201700154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kang, Yi‐Hao</creatorcontrib><creatorcontrib>Shi, Zhi‐Cheng</creatorcontrib><creatorcontrib>Huang, Bi‐Hua</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><title>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</title><title>Annalen der Physik</title><description>In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks.
The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account.</description><subject>Adiabatic flow</subject><subject>Computer simulation</subject><subject>Coplanar waveguides</subject><subject>Information transfer</subject><subject>Networks</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Robustness (mathematics)</subject><subject>Shortcuts to adiabaticity</subject><subject>Superconducting network</subject><subject>Superconducting quantum interference device</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWLRb1wHXrTePeWRZqtVCqa-6chEyMxmZOk3GZELpvzdlRJeu7rlwvns5B6ErAlMCQG-UqbopBZIBkISfoBFJKJmwPBenaAQALGrg52js_TaukAAFykfofaF8jyONX2wRonwOyvRhh5emtm6n-sYavHHK-Fo73Bg8Mya0yg2IqhrV4tfQaVdaU4Wyb8wHXut-b92nv0RntWq9Hv_MC_S2uNvMHyarx_vlfLaalCxnfCJ4ylMCtCA6LwvgtQLOsyot6zTPdKZ0lfFcC8pFDYyoVBWsiplLwSpOWErZBboe7nbOfgXte7m1wZn4UhLBklwQBml0TQdX6az3Tteyc81OuYMkII8dymOH8rfDCIgB2DetPvzjlrP17dMf-w3Hl3Tt</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Kang, Yi‐Hao</creator><creator>Shi, Zhi‐Cheng</creator><creator>Huang, Bi‐Hua</creator><creator>Song, Jie</creator><creator>Xia, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201709</creationdate><title>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</title><author>Kang, Yi‐Hao ; Shi, Zhi‐Cheng ; Huang, Bi‐Hua ; Song, Jie ; Xia, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adiabatic flow</topic><topic>Computer simulation</topic><topic>Coplanar waveguides</topic><topic>Information transfer</topic><topic>Networks</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Robustness (mathematics)</topic><topic>Shortcuts to adiabaticity</topic><topic>Superconducting network</topic><topic>Superconducting quantum interference device</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yi‐Hao</creatorcontrib><creatorcontrib>Shi, Zhi‐Cheng</creatorcontrib><creatorcontrib>Huang, Bi‐Hua</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yi‐Hao</au><au>Shi, Zhi‐Cheng</au><au>Huang, Bi‐Hua</au><au>Song, Jie</au><au>Xia, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</atitle><jtitle>Annalen der Physik</jtitle><date>2017-09</date><risdate>2017</risdate><volume>529</volume><issue>9</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks.
The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201700154</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-3804 |
ispartof | Annalen der Physik, 2017-09, Vol.529 (9), p.n/a |
issn | 0003-3804 1521-3889 |
language | eng |
recordid | cdi_proquest_journals_1935891306 |
source | Wiley Journals |
subjects | Adiabatic flow Computer simulation Coplanar waveguides Information transfer Networks Quantum phenomena Quantum theory Robustness (mathematics) Shortcuts to adiabaticity Superconducting network Superconducting quantum interference device Superconducting quantum interference devices Superconductivity Superconductors |
title | Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Robust%20Quantum%20Information%20Transfer%20in%20Annular%20and%20Radial%20Superconducting%20Networks&rft.jtitle=Annalen%20der%20Physik&rft.au=Kang,%20Yi%E2%80%90Hao&rft.date=2017-09&rft.volume=529&rft.issue=9&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201700154&rft_dat=%3Cproquest_cross%3E1935891306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935891306&rft_id=info:pmid/&rfr_iscdi=true |