Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks

In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2017-09, Vol.529 (9), p.n/a
Hauptverfasser: Kang, Yi‐Hao, Shi, Zhi‐Cheng, Huang, Bi‐Hua, Song, Jie, Xia, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Annalen der Physik
container_volume 529
creator Kang, Yi‐Hao
Shi, Zhi‐Cheng
Huang, Bi‐Hua
Song, Jie
Xia, Yan
description In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks. The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account.
doi_str_mv 10.1002/andp.201700154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935891306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935891306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWLRb1wHXrTePeWRZqtVCqa-6chEyMxmZOk3GZELpvzdlRJeu7rlwvns5B6ErAlMCQG-UqbopBZIBkISfoBFJKJmwPBenaAQALGrg52js_TaukAAFykfofaF8jyONX2wRonwOyvRhh5emtm6n-sYavHHK-Fo73Bg8Mya0yg2IqhrV4tfQaVdaU4Wyb8wHXut-b92nv0RntWq9Hv_MC_S2uNvMHyarx_vlfLaalCxnfCJ4ylMCtCA6LwvgtQLOsyot6zTPdKZ0lfFcC8pFDYyoVBWsiplLwSpOWErZBboe7nbOfgXte7m1wZn4UhLBklwQBml0TQdX6az3Tteyc81OuYMkII8dymOH8rfDCIgB2DetPvzjlrP17dMf-w3Hl3Tt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935891306</pqid></control><display><type>article</type><title>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</title><source>Wiley Journals</source><creator>Kang, Yi‐Hao ; Shi, Zhi‐Cheng ; Huang, Bi‐Hua ; Song, Jie ; Xia, Yan</creator><creatorcontrib>Kang, Yi‐Hao ; Shi, Zhi‐Cheng ; Huang, Bi‐Hua ; Song, Jie ; Xia, Yan</creatorcontrib><description>In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks. The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201700154</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adiabatic flow ; Computer simulation ; Coplanar waveguides ; Information transfer ; Networks ; Quantum phenomena ; Quantum theory ; Robustness (mathematics) ; Shortcuts to adiabaticity ; Superconducting network ; Superconducting quantum interference device ; Superconducting quantum interference devices ; Superconductivity ; Superconductors</subject><ispartof>Annalen der Physik, 2017-09, Vol.529 (9), p.n/a</ispartof><rights>2017 by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</citedby><cites>FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201700154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201700154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kang, Yi‐Hao</creatorcontrib><creatorcontrib>Shi, Zhi‐Cheng</creatorcontrib><creatorcontrib>Huang, Bi‐Hua</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><title>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</title><title>Annalen der Physik</title><description>In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks. The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account.</description><subject>Adiabatic flow</subject><subject>Computer simulation</subject><subject>Coplanar waveguides</subject><subject>Information transfer</subject><subject>Networks</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Robustness (mathematics)</subject><subject>Shortcuts to adiabaticity</subject><subject>Superconducting network</subject><subject>Superconducting quantum interference device</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><subject>Superconductors</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWLRb1wHXrTePeWRZqtVCqa-6chEyMxmZOk3GZELpvzdlRJeu7rlwvns5B6ErAlMCQG-UqbopBZIBkISfoBFJKJmwPBenaAQALGrg52js_TaukAAFykfofaF8jyONX2wRonwOyvRhh5emtm6n-sYavHHK-Fo73Bg8Mya0yg2IqhrV4tfQaVdaU4Wyb8wHXut-b92nv0RntWq9Hv_MC_S2uNvMHyarx_vlfLaalCxnfCJ4ylMCtCA6LwvgtQLOsyot6zTPdKZ0lfFcC8pFDYyoVBWsiplLwSpOWErZBboe7nbOfgXte7m1wZn4UhLBklwQBml0TQdX6az3Tteyc81OuYMkII8dymOH8rfDCIgB2DetPvzjlrP17dMf-w3Hl3Tt</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Kang, Yi‐Hao</creator><creator>Shi, Zhi‐Cheng</creator><creator>Huang, Bi‐Hua</creator><creator>Song, Jie</creator><creator>Xia, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201709</creationdate><title>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</title><author>Kang, Yi‐Hao ; Shi, Zhi‐Cheng ; Huang, Bi‐Hua ; Song, Jie ; Xia, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-94646102b1e8cb04fa0447d6cf687e7aed748e9249f031a6ab3d100c93d413623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adiabatic flow</topic><topic>Computer simulation</topic><topic>Coplanar waveguides</topic><topic>Information transfer</topic><topic>Networks</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Robustness (mathematics)</topic><topic>Shortcuts to adiabaticity</topic><topic>Superconducting network</topic><topic>Superconducting quantum interference device</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yi‐Hao</creatorcontrib><creatorcontrib>Shi, Zhi‐Cheng</creatorcontrib><creatorcontrib>Huang, Bi‐Hua</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yi‐Hao</au><au>Shi, Zhi‐Cheng</au><au>Huang, Bi‐Hua</au><au>Song, Jie</au><au>Xia, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks</atitle><jtitle>Annalen der Physik</jtitle><date>2017-09</date><risdate>2017</risdate><volume>529</volume><issue>9</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>In this paper, we propose a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks, where each quantum node is composed of a superconducting quantum interference device (SQUID) inside a coplanar waveguide resonator (CPWR). The process is based on reversely constructing time‐dependent control Hamiltonian by designing evolution operator. With the protocol, the maximal population of lossy intermediate states and the amplitudes of pulses can be easily controlled by two corresponding control parameters. Therefore, one can design feasible pulses for QIT with great flexibility. Besides, the speed of the QIT here is much faster compared with that with adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account. Therefore, the protocol may provide a useful way to manipulate quantum information networks. The authors have proposed a protocol to achieve fast and robustness quantum information transfer (QIT) in annular and radial superconducting networks. Based on the method, which reversely constructs time‐dependent control Hamiltonian by designing evolution operator, QIT in referenced superconducting networks are much faster than adiabatic QIT. Moreover, numerical simulations show that the protocol still possesses high fidelity when lossy factors and imperfect operations are taken into account.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201700154</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2017-09, Vol.529 (9), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_1935891306
source Wiley Journals
subjects Adiabatic flow
Computer simulation
Coplanar waveguides
Information transfer
Networks
Quantum phenomena
Quantum theory
Robustness (mathematics)
Shortcuts to adiabaticity
Superconducting network
Superconducting quantum interference device
Superconducting quantum interference devices
Superconductivity
Superconductors
title Fast and Robust Quantum Information Transfer in Annular and Radial Superconducting Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Robust%20Quantum%20Information%20Transfer%20in%20Annular%20and%20Radial%20Superconducting%20Networks&rft.jtitle=Annalen%20der%20Physik&rft.au=Kang,%20Yi%E2%80%90Hao&rft.date=2017-09&rft.volume=529&rft.issue=9&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201700154&rft_dat=%3Cproquest_cross%3E1935891306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935891306&rft_id=info:pmid/&rfr_iscdi=true