Variational Principles of Extensible Shearable Elastica—Engesser's Approach
An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the ext...
Gespeichert in:
Veröffentlicht in: | TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 2017, Vol.60(5), pp.284-294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 5 |
container_start_page | 284 |
container_title | TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES |
container_volume | 60 |
creator | TAKI, Toshimi KONDO, Kyohei |
description | An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load. |
doi_str_mv | 10.2322/tjsass.60.284 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935679736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935679736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFaP3gMePKXudzbHUuMHVBSsXpfpdtMmxCTupKA3f4S_0F9iSqQIw8y8zMMM7xByzuiEC86vuhIBcaJ7aeQBGXFm0lhyqg7JiCqZxsIwdkxOEEtKhVCJGZGHVwgFdEVTQxU9haJ2RVt5jJo8yj46X2OxrHz0vPEQYNdlFWBXOPj5-s7qtUf04RKjaduGBtzmlBzlUKE_-6tj8nKTLWZ38fzx9n42ncdOpLyLNQjlnDOCiVzzhPmUyhVVRprUAGVUA09Sz00il4rSPnLKYMXzXORKrpwXY3Ix7O3Pvm89drZstqG3gJalQukkTYTuqXigXGgQg89tG4o3CJ-WUbv7mB0-ZnUvjez564EvsYO139MQeseV_0erXVpYpi1P9mO3gWB9LX4BbVF5XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935679736</pqid></control><display><type>article</type><title>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>TAKI, Toshimi ; KONDO, Kyohei</creator><creatorcontrib>TAKI, Toshimi ; KONDO, Kyohei</creatorcontrib><description>An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load.</description><identifier>ISSN: 0549-3811</identifier><identifier>EISSN: 2189-4205</identifier><identifier>DOI: 10.2322/tjsass.60.284</identifier><language>eng</language><publisher>Tokyo: THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</publisher><subject>Buckling ; Buckling Load of Beam ; Constitutive equations ; Constitutive relationships ; Cross-sections ; Deformation ; Elastica ; Engesser's Approach ; Extensibility ; Extensible Shearable Elastica ; Potential energy ; Shear ; Shear stiffness ; Solid mechanics ; Stiffness ; Structural Mechanics ; Variational Principle ; Variational principles</subject><ispartof>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(5), pp.284-294</ispartof><rights>2017 The Japan Society for Aeronautical and Space Sciences</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</citedby><cites>FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>TAKI, Toshimi</creatorcontrib><creatorcontrib>KONDO, Kyohei</creatorcontrib><title>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</title><title>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</title><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><description>An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load.</description><subject>Buckling</subject><subject>Buckling Load of Beam</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Cross-sections</subject><subject>Deformation</subject><subject>Elastica</subject><subject>Engesser's Approach</subject><subject>Extensibility</subject><subject>Extensible Shearable Elastica</subject><subject>Potential energy</subject><subject>Shear</subject><subject>Shear stiffness</subject><subject>Solid mechanics</subject><subject>Stiffness</subject><subject>Structural Mechanics</subject><subject>Variational Principle</subject><subject>Variational principles</subject><issn>0549-3811</issn><issn>2189-4205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFaP3gMePKXudzbHUuMHVBSsXpfpdtMmxCTupKA3f4S_0F9iSqQIw8y8zMMM7xByzuiEC86vuhIBcaJ7aeQBGXFm0lhyqg7JiCqZxsIwdkxOEEtKhVCJGZGHVwgFdEVTQxU9haJ2RVt5jJo8yj46X2OxrHz0vPEQYNdlFWBXOPj5-s7qtUf04RKjaduGBtzmlBzlUKE_-6tj8nKTLWZ38fzx9n42ncdOpLyLNQjlnDOCiVzzhPmUyhVVRprUAGVUA09Sz00il4rSPnLKYMXzXORKrpwXY3Ix7O3Pvm89drZstqG3gJalQukkTYTuqXigXGgQg89tG4o3CJ-WUbv7mB0-ZnUvjez564EvsYO139MQeseV_0erXVpYpi1P9mO3gWB9LX4BbVF5XQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>TAKI, Toshimi</creator><creator>KONDO, Kyohei</creator><general>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</title><author>TAKI, Toshimi ; KONDO, Kyohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buckling</topic><topic>Buckling Load of Beam</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Cross-sections</topic><topic>Deformation</topic><topic>Elastica</topic><topic>Engesser's Approach</topic><topic>Extensibility</topic><topic>Extensible Shearable Elastica</topic><topic>Potential energy</topic><topic>Shear</topic><topic>Shear stiffness</topic><topic>Solid mechanics</topic><topic>Stiffness</topic><topic>Structural Mechanics</topic><topic>Variational Principle</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAKI, Toshimi</creatorcontrib><creatorcontrib>KONDO, Kyohei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAKI, Toshimi</au><au>KONDO, Kyohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</atitle><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>60</volume><issue>5</issue><spage>284</spage><epage>294</epage><pages>284-294</pages><issn>0549-3811</issn><eissn>2189-4205</eissn><abstract>An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load.</abstract><cop>Tokyo</cop><pub>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</pub><doi>10.2322/tjsass.60.284</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0549-3811 |
ispartof | TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(5), pp.284-294 |
issn | 0549-3811 2189-4205 |
language | eng |
recordid | cdi_proquest_journals_1935679736 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Buckling Buckling Load of Beam Constitutive equations Constitutive relationships Cross-sections Deformation Elastica Engesser's Approach Extensibility Extensible Shearable Elastica Potential energy Shear Shear stiffness Solid mechanics Stiffness Structural Mechanics Variational Principle Variational principles |
title | Variational Principles of Extensible Shearable Elastica—Engesser's Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Principles%20of%20Extensible%20Shearable%20Elastica%E2%80%94Engesser's%20Approach&rft.jtitle=TRANSACTIONS%20OF%20THE%20JAPAN%20SOCIETY%20FOR%20AERONAUTICAL%20AND%20SPACE%20SCIENCES&rft.au=TAKI,%20Toshimi&rft.date=2017-01-01&rft.volume=60&rft.issue=5&rft.spage=284&rft.epage=294&rft.pages=284-294&rft.issn=0549-3811&rft.eissn=2189-4205&rft_id=info:doi/10.2322/tjsass.60.284&rft_dat=%3Cproquest_cross%3E1935679736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935679736&rft_id=info:pmid/&rfr_iscdi=true |