Variational Principles of Extensible Shearable Elastica—Engesser's Approach

An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 2017, Vol.60(5), pp.284-294
Hauptverfasser: TAKI, Toshimi, KONDO, Kyohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 5
container_start_page 284
container_title TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
container_volume 60
creator TAKI, Toshimi
KONDO, Kyohei
description An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load.
doi_str_mv 10.2322/tjsass.60.284
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935679736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935679736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFaP3gMePKXudzbHUuMHVBSsXpfpdtMmxCTupKA3f4S_0F9iSqQIw8y8zMMM7xByzuiEC86vuhIBcaJ7aeQBGXFm0lhyqg7JiCqZxsIwdkxOEEtKhVCJGZGHVwgFdEVTQxU9haJ2RVt5jJo8yj46X2OxrHz0vPEQYNdlFWBXOPj5-s7qtUf04RKjaduGBtzmlBzlUKE_-6tj8nKTLWZ38fzx9n42ncdOpLyLNQjlnDOCiVzzhPmUyhVVRprUAGVUA09Sz00il4rSPnLKYMXzXORKrpwXY3Ix7O3Pvm89drZstqG3gJalQukkTYTuqXigXGgQg89tG4o3CJ-WUbv7mB0-ZnUvjez564EvsYO139MQeseV_0erXVpYpi1P9mO3gWB9LX4BbVF5XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935679736</pqid></control><display><type>article</type><title>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>TAKI, Toshimi ; KONDO, Kyohei</creator><creatorcontrib>TAKI, Toshimi ; KONDO, Kyohei</creatorcontrib><description>An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load.</description><identifier>ISSN: 0549-3811</identifier><identifier>EISSN: 2189-4205</identifier><identifier>DOI: 10.2322/tjsass.60.284</identifier><language>eng</language><publisher>Tokyo: THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</publisher><subject>Buckling ; Buckling Load of Beam ; Constitutive equations ; Constitutive relationships ; Cross-sections ; Deformation ; Elastica ; Engesser's Approach ; Extensibility ; Extensible Shearable Elastica ; Potential energy ; Shear ; Shear stiffness ; Solid mechanics ; Stiffness ; Structural Mechanics ; Variational Principle ; Variational principles</subject><ispartof>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(5), pp.284-294</ispartof><rights>2017 The Japan Society for Aeronautical and Space Sciences</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</citedby><cites>FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>TAKI, Toshimi</creatorcontrib><creatorcontrib>KONDO, Kyohei</creatorcontrib><title>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</title><title>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</title><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><description>An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load.</description><subject>Buckling</subject><subject>Buckling Load of Beam</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Cross-sections</subject><subject>Deformation</subject><subject>Elastica</subject><subject>Engesser's Approach</subject><subject>Extensibility</subject><subject>Extensible Shearable Elastica</subject><subject>Potential energy</subject><subject>Shear</subject><subject>Shear stiffness</subject><subject>Solid mechanics</subject><subject>Stiffness</subject><subject>Structural Mechanics</subject><subject>Variational Principle</subject><subject>Variational principles</subject><issn>0549-3811</issn><issn>2189-4205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFaP3gMePKXudzbHUuMHVBSsXpfpdtMmxCTupKA3f4S_0F9iSqQIw8y8zMMM7xByzuiEC86vuhIBcaJ7aeQBGXFm0lhyqg7JiCqZxsIwdkxOEEtKhVCJGZGHVwgFdEVTQxU9haJ2RVt5jJo8yj46X2OxrHz0vPEQYNdlFWBXOPj5-s7qtUf04RKjaduGBtzmlBzlUKE_-6tj8nKTLWZ38fzx9n42ncdOpLyLNQjlnDOCiVzzhPmUyhVVRprUAGVUA09Sz00il4rSPnLKYMXzXORKrpwXY3Ix7O3Pvm89drZstqG3gJalQukkTYTuqXigXGgQg89tG4o3CJ-WUbv7mB0-ZnUvjez564EvsYO139MQeseV_0erXVpYpi1P9mO3gWB9LX4BbVF5XQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>TAKI, Toshimi</creator><creator>KONDO, Kyohei</creator><general>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</title><author>TAKI, Toshimi ; KONDO, Kyohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6a35ccc8313f6271e904d0584898a0106a279e2874b500500f01ad2ff3f54dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buckling</topic><topic>Buckling Load of Beam</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Cross-sections</topic><topic>Deformation</topic><topic>Elastica</topic><topic>Engesser's Approach</topic><topic>Extensibility</topic><topic>Extensible Shearable Elastica</topic><topic>Potential energy</topic><topic>Shear</topic><topic>Shear stiffness</topic><topic>Solid mechanics</topic><topic>Stiffness</topic><topic>Structural Mechanics</topic><topic>Variational Principle</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAKI, Toshimi</creatorcontrib><creatorcontrib>KONDO, Kyohei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAKI, Toshimi</au><au>KONDO, Kyohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Principles of Extensible Shearable Elastica—Engesser's Approach</atitle><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>60</volume><issue>5</issue><spage>284</spage><epage>294</epage><pages>284-294</pages><issn>0549-3811</issn><eissn>2189-4205</eissn><abstract>An extensible shearable elastica is a rigorous mathematical model of the Timoshenko beam, of which the cross-sections remain planar, but not necessarily normal to the beam axis after deformation. First, the principle of virtual work for the extensible shearable elastica expressed in terms of the extensional and shear strains of the axis and the rotation of the cross-section in Engesser's approach is derived from the virtual work in three-dimensional solid mechanics. Then, utilizing linear constitutive equations between generalized stresses and strains, we derive the principle of stationary potential energy, also expressed in terms of the extensional and shear strains and rotation. Finally, from the criterion of Trefftz on the second variation of the potential energy, we obtain the buckling equations for the extensible and shearable elastica, which show the effect of the axial and shear stiffness on the buckling load for a cantilever elastica subjected to compressive end load.</abstract><cop>Tokyo</cop><pub>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</pub><doi>10.2322/tjsass.60.284</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0549-3811
ispartof TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(5), pp.284-294
issn 0549-3811
2189-4205
language eng
recordid cdi_proquest_journals_1935679736
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Buckling
Buckling Load of Beam
Constitutive equations
Constitutive relationships
Cross-sections
Deformation
Elastica
Engesser's Approach
Extensibility
Extensible Shearable Elastica
Potential energy
Shear
Shear stiffness
Solid mechanics
Stiffness
Structural Mechanics
Variational Principle
Variational principles
title Variational Principles of Extensible Shearable Elastica—Engesser's Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Principles%20of%20Extensible%20Shearable%20Elastica%E2%80%94Engesser's%20Approach&rft.jtitle=TRANSACTIONS%20OF%20THE%20JAPAN%20SOCIETY%20FOR%20AERONAUTICAL%20AND%20SPACE%20SCIENCES&rft.au=TAKI,%20Toshimi&rft.date=2017-01-01&rft.volume=60&rft.issue=5&rft.spage=284&rft.epage=294&rft.pages=284-294&rft.issn=0549-3811&rft.eissn=2189-4205&rft_id=info:doi/10.2322/tjsass.60.284&rft_dat=%3Cproquest_cross%3E1935679736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935679736&rft_id=info:pmid/&rfr_iscdi=true