Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation
Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit s...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2017-04, Vol.110-111, p.113-126 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | International journal of solids and structures |
container_volume | 110-111 |
creator | Crump, Timothy Ferté, Guilhem Jivkov, Andrey Mummery, Paul Tran, Van-Xuan |
description | Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly. |
doi_str_mv | 10.1016/j.ijsolstr.2017.01.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935260350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768317300343</els_id><sourcerecordid>1935260350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCsgS5wSv7djJDVR-pUocgLPlOg5ySJNgu4i8Pa5Szpz2sPPN7gxCl0ByICCu29y1YehC9DklIHMCOWHFEVpAKauMAhfHaEEIJZkUJTtFZyG0hBDOKrJAr3dTr7fO4MZrE3feYt3rbgou4M2E7c_YOeMiTv6uxvWsDUlTY7c97EwiP_Hoh1F_6OiG_hydNLoL9uIwl-j94f5t9ZStXx6fV7frzLCyjJnWgheCbxi1rIIKaCXLFMhw2ggOheRcgpYaCgYURKNlWVrZJLaouK4LzpboavZNt792NkTVDjuf3g8KKlZQkWogSSVmlfFDCN42avRuq_2kgKh9gapVfwWqfYGKgEpkAm9m0KYM3856FYyzvbG189ZEVQ_uP4tfyoZ8ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935260350</pqid></control><display><type>article</type><title>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Crump, Timothy ; Ferté, Guilhem ; Jivkov, Andrey ; Mummery, Paul ; Tran, Van-Xuan</creator><creatorcontrib>Crump, Timothy ; Ferté, Guilhem ; Jivkov, Andrey ; Mummery, Paul ; Tran, Van-Xuan</creatorcontrib><description>Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2017.01.035</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Catalytic cracking ; Cohesive zone ; Computing time ; Crack propagation ; Cracking ; Dynamic structural analysis ; Elastodynamics ; Finite element method ; Fracture mechanics ; Loads (forces) ; Polymethyl methacrylate ; Quasi-explicit scheme ; Strain hardening ; Velocity ; Velocity hardening ; XFEM</subject><ispartof>International journal of solids and structures, 2017-04, Vol.110-111, p.113-126</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</citedby><cites>FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</cites><orcidid>0000-0002-0610-5394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768317300343$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Crump, Timothy</creatorcontrib><creatorcontrib>Ferté, Guilhem</creatorcontrib><creatorcontrib>Jivkov, Andrey</creatorcontrib><creatorcontrib>Mummery, Paul</creatorcontrib><creatorcontrib>Tran, Van-Xuan</creatorcontrib><title>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</title><title>International journal of solids and structures</title><description>Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly.</description><subject>Catalytic cracking</subject><subject>Cohesive zone</subject><subject>Computing time</subject><subject>Crack propagation</subject><subject>Cracking</subject><subject>Dynamic structural analysis</subject><subject>Elastodynamics</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Loads (forces)</subject><subject>Polymethyl methacrylate</subject><subject>Quasi-explicit scheme</subject><subject>Strain hardening</subject><subject>Velocity</subject><subject>Velocity hardening</subject><subject>XFEM</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCsgS5wSv7djJDVR-pUocgLPlOg5ySJNgu4i8Pa5Szpz2sPPN7gxCl0ByICCu29y1YehC9DklIHMCOWHFEVpAKauMAhfHaEEIJZkUJTtFZyG0hBDOKrJAr3dTr7fO4MZrE3feYt3rbgou4M2E7c_YOeMiTv6uxvWsDUlTY7c97EwiP_Hoh1F_6OiG_hydNLoL9uIwl-j94f5t9ZStXx6fV7frzLCyjJnWgheCbxi1rIIKaCXLFMhw2ggOheRcgpYaCgYURKNlWVrZJLaouK4LzpboavZNt792NkTVDjuf3g8KKlZQkWogSSVmlfFDCN42avRuq_2kgKh9gapVfwWqfYGKgEpkAm9m0KYM3856FYyzvbG189ZEVQ_uP4tfyoZ8ng</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Crump, Timothy</creator><creator>Ferté, Guilhem</creator><creator>Jivkov, Andrey</creator><creator>Mummery, Paul</creator><creator>Tran, Van-Xuan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0610-5394</orcidid></search><sort><creationdate>201704</creationdate><title>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</title><author>Crump, Timothy ; Ferté, Guilhem ; Jivkov, Andrey ; Mummery, Paul ; Tran, Van-Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalytic cracking</topic><topic>Cohesive zone</topic><topic>Computing time</topic><topic>Crack propagation</topic><topic>Cracking</topic><topic>Dynamic structural analysis</topic><topic>Elastodynamics</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Loads (forces)</topic><topic>Polymethyl methacrylate</topic><topic>Quasi-explicit scheme</topic><topic>Strain hardening</topic><topic>Velocity</topic><topic>Velocity hardening</topic><topic>XFEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crump, Timothy</creatorcontrib><creatorcontrib>Ferté, Guilhem</creatorcontrib><creatorcontrib>Jivkov, Andrey</creatorcontrib><creatorcontrib>Mummery, Paul</creatorcontrib><creatorcontrib>Tran, Van-Xuan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crump, Timothy</au><au>Ferté, Guilhem</au><au>Jivkov, Andrey</au><au>Mummery, Paul</au><au>Tran, Van-Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</atitle><jtitle>International journal of solids and structures</jtitle><date>2017-04</date><risdate>2017</risdate><volume>110-111</volume><spage>113</spage><epage>126</epage><pages>113-126</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2017.01.035</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0610-5394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2017-04, Vol.110-111, p.113-126 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_journals_1935260350 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Catalytic cracking Cohesive zone Computing time Crack propagation Cracking Dynamic structural analysis Elastodynamics Finite element method Fracture mechanics Loads (forces) Polymethyl methacrylate Quasi-explicit scheme Strain hardening Velocity Velocity hardening XFEM |
title | Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20fracture%20analysis%20by%20explicit%20solid%20dynamics%20and%20implicit%20crack%20propagation&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Crump,%20Timothy&rft.date=2017-04&rft.volume=110-111&rft.spage=113&rft.epage=126&rft.pages=113-126&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2017.01.035&rft_dat=%3Cproquest_cross%3E1935260350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935260350&rft_id=info:pmid/&rft_els_id=S0020768317300343&rfr_iscdi=true |