Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation

Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2017-04, Vol.110-111, p.113-126
Hauptverfasser: Crump, Timothy, Ferté, Guilhem, Jivkov, Andrey, Mummery, Paul, Tran, Van-Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 113
container_title International journal of solids and structures
container_volume 110-111
creator Crump, Timothy
Ferté, Guilhem
Jivkov, Andrey
Mummery, Paul
Tran, Van-Xuan
description Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly.
doi_str_mv 10.1016/j.ijsolstr.2017.01.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935260350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768317300343</els_id><sourcerecordid>1935260350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCsgS5wSv7djJDVR-pUocgLPlOg5ySJNgu4i8Pa5Szpz2sPPN7gxCl0ByICCu29y1YehC9DklIHMCOWHFEVpAKauMAhfHaEEIJZkUJTtFZyG0hBDOKrJAr3dTr7fO4MZrE3feYt3rbgou4M2E7c_YOeMiTv6uxvWsDUlTY7c97EwiP_Hoh1F_6OiG_hydNLoL9uIwl-j94f5t9ZStXx6fV7frzLCyjJnWgheCbxi1rIIKaCXLFMhw2ggOheRcgpYaCgYURKNlWVrZJLaouK4LzpboavZNt792NkTVDjuf3g8KKlZQkWogSSVmlfFDCN42avRuq_2kgKh9gapVfwWqfYGKgEpkAm9m0KYM3856FYyzvbG189ZEVQ_uP4tfyoZ8ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935260350</pqid></control><display><type>article</type><title>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Crump, Timothy ; Ferté, Guilhem ; Jivkov, Andrey ; Mummery, Paul ; Tran, Van-Xuan</creator><creatorcontrib>Crump, Timothy ; Ferté, Guilhem ; Jivkov, Andrey ; Mummery, Paul ; Tran, Van-Xuan</creatorcontrib><description>Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2017.01.035</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Catalytic cracking ; Cohesive zone ; Computing time ; Crack propagation ; Cracking ; Dynamic structural analysis ; Elastodynamics ; Finite element method ; Fracture mechanics ; Loads (forces) ; Polymethyl methacrylate ; Quasi-explicit scheme ; Strain hardening ; Velocity ; Velocity hardening ; XFEM</subject><ispartof>International journal of solids and structures, 2017-04, Vol.110-111, p.113-126</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</citedby><cites>FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</cites><orcidid>0000-0002-0610-5394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768317300343$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Crump, Timothy</creatorcontrib><creatorcontrib>Ferté, Guilhem</creatorcontrib><creatorcontrib>Jivkov, Andrey</creatorcontrib><creatorcontrib>Mummery, Paul</creatorcontrib><creatorcontrib>Tran, Van-Xuan</creatorcontrib><title>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</title><title>International journal of solids and structures</title><description>Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly.</description><subject>Catalytic cracking</subject><subject>Cohesive zone</subject><subject>Computing time</subject><subject>Crack propagation</subject><subject>Cracking</subject><subject>Dynamic structural analysis</subject><subject>Elastodynamics</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Loads (forces)</subject><subject>Polymethyl methacrylate</subject><subject>Quasi-explicit scheme</subject><subject>Strain hardening</subject><subject>Velocity</subject><subject>Velocity hardening</subject><subject>XFEM</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCsgS5wSv7djJDVR-pUocgLPlOg5ySJNgu4i8Pa5Szpz2sPPN7gxCl0ByICCu29y1YehC9DklIHMCOWHFEVpAKauMAhfHaEEIJZkUJTtFZyG0hBDOKrJAr3dTr7fO4MZrE3feYt3rbgou4M2E7c_YOeMiTv6uxvWsDUlTY7c97EwiP_Hoh1F_6OiG_hydNLoL9uIwl-j94f5t9ZStXx6fV7frzLCyjJnWgheCbxi1rIIKaCXLFMhw2ggOheRcgpYaCgYURKNlWVrZJLaouK4LzpboavZNt792NkTVDjuf3g8KKlZQkWogSSVmlfFDCN42avRuq_2kgKh9gapVfwWqfYGKgEpkAm9m0KYM3856FYyzvbG189ZEVQ_uP4tfyoZ8ng</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Crump, Timothy</creator><creator>Ferté, Guilhem</creator><creator>Jivkov, Andrey</creator><creator>Mummery, Paul</creator><creator>Tran, Van-Xuan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0610-5394</orcidid></search><sort><creationdate>201704</creationdate><title>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</title><author>Crump, Timothy ; Ferté, Guilhem ; Jivkov, Andrey ; Mummery, Paul ; Tran, Van-Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-aa64564b32e391912978101c42f641574471a7a1531216fa788e7fc38594ad543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalytic cracking</topic><topic>Cohesive zone</topic><topic>Computing time</topic><topic>Crack propagation</topic><topic>Cracking</topic><topic>Dynamic structural analysis</topic><topic>Elastodynamics</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Loads (forces)</topic><topic>Polymethyl methacrylate</topic><topic>Quasi-explicit scheme</topic><topic>Strain hardening</topic><topic>Velocity</topic><topic>Velocity hardening</topic><topic>XFEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crump, Timothy</creatorcontrib><creatorcontrib>Ferté, Guilhem</creatorcontrib><creatorcontrib>Jivkov, Andrey</creatorcontrib><creatorcontrib>Mummery, Paul</creatorcontrib><creatorcontrib>Tran, Van-Xuan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crump, Timothy</au><au>Ferté, Guilhem</au><au>Jivkov, Andrey</au><au>Mummery, Paul</au><au>Tran, Van-Xuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation</atitle><jtitle>International journal of solids and structures</jtitle><date>2017-04</date><risdate>2017</risdate><volume>110-111</volume><spage>113</spage><epage>126</epage><pages>113-126</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Combining time-dependent structural loading with dynamic crack propagation is a problem that has been under consideration since the early days of fracture mechanics. Here we consider a method to deal with this issue, which combines a set-valued opening-rate-dependent cohesive law, a quasi-explicit solver and the eXtended Finite Element Method of representing a crack. The approach allows a propagating crack to be mesh-independent while also being dynamically informed through a quasi-explicit solver. Several well established experiments on glass (Homolite-100) and Polymethyl methacrylate (PMMA) are successfully modelled and compared against existing analytical solutions and other approaches in 2D up until the experimentally observed branching speeds. The comparison highlights the robustness of ensuring energy is conserved globally by treating a propagating phenomenological crack-tip implicitly, while taking advantage of the computational efficiency of treating the global dynamics explicitly.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2017.01.035</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0610-5394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2017-04, Vol.110-111, p.113-126
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_1935260350
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Catalytic cracking
Cohesive zone
Computing time
Crack propagation
Cracking
Dynamic structural analysis
Elastodynamics
Finite element method
Fracture mechanics
Loads (forces)
Polymethyl methacrylate
Quasi-explicit scheme
Strain hardening
Velocity
Velocity hardening
XFEM
title Dynamic fracture analysis by explicit solid dynamics and implicit crack propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20fracture%20analysis%20by%20explicit%20solid%20dynamics%20and%20implicit%20crack%20propagation&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Crump,%20Timothy&rft.date=2017-04&rft.volume=110-111&rft.spage=113&rft.epage=126&rft.pages=113-126&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2017.01.035&rft_dat=%3Cproquest_cross%3E1935260350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935260350&rft_id=info:pmid/&rft_els_id=S0020768317300343&rfr_iscdi=true