On Global Stability of the Lotka Reactions with Generalized Mass-Action Kinetics
Chemical reaction networks with generalized mass-action kinetics lead to power-law dynamical systems. As a simple example, we consider the Lotka reactions with two chemical species and arbitrary power-law kinetics. We study existence, uniqueness, and stability of the positive equilibrium, in particu...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2017-10, Vol.151 (1), p.53-80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Acta applicandae mathematicae |
container_volume | 151 |
creator | Boros, Balázs Hofbauer, Josef Müller, Stefan |
description | Chemical reaction networks with generalized mass-action kinetics lead to power-law dynamical systems. As a simple example, we consider the Lotka reactions with two chemical species and arbitrary power-law kinetics. We study existence, uniqueness, and stability of the positive equilibrium, in particular, we characterize its global asymptotic stability in terms of the kinetic orders. |
doi_str_mv | 10.1007/s10440-017-0102-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935190493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935190493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8ed3fe281e042c4f9bd0969bc24570ca98fea5abae2454aa8858aeaa4ea66d003</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hF4lxw2jRtjtMEAzEE4uMcua3LMko7kkxo_HoyxoELB8uW_b629TB2KuBcABQXXoCUkIAoYkCa6D02EnkRC8jUPhuBUEVSgtCH7Mj7JQBkWqkRe7jv-awbKuz4U8DKdjZs-NDysCA-H8Ib8kfCOtih9_zThgWfUU8OO_tFDb9D75PJz5Tf2p6Crf0xO2ix83Tym8fs5eryeXqdzO9nN9PJPKkzoUJSUpO1lJaCQKa1bHXVgFa6qlOZF1CjLlvCHCuk2JCIZZmXSIiSUKkmfj9mZ7u9Kzd8rMkHsxzWro8njdBZLjRInUWV2KlqN3jvqDUrZ9_RbYwAswVnduBMBGe24IyOnnTn8VHbv5L7s_lf0zeIYHBX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935190493</pqid></control><display><type>article</type><title>On Global Stability of the Lotka Reactions with Generalized Mass-Action Kinetics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boros, Balázs ; Hofbauer, Josef ; Müller, Stefan</creator><creatorcontrib>Boros, Balázs ; Hofbauer, Josef ; Müller, Stefan</creatorcontrib><description>Chemical reaction networks with generalized mass-action kinetics lead to power-law dynamical systems. As a simple example, we consider the Lotka reactions with two chemical species and arbitrary power-law kinetics. We study existence, uniqueness, and stability of the positive equilibrium, in particular, we characterize its global asymptotic stability in terms of the kinetic orders.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-017-0102-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Calculus of Variations and Optimal Control; Optimization ; Chemical reactions ; Computational Mathematics and Numerical Analysis ; Kinetics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Reaction kinetics ; Stability ; Uniqueness</subject><ispartof>Acta applicandae mathematicae, 2017-10, Vol.151 (1), p.53-80</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Acta Applicandae Mathematicae is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8ed3fe281e042c4f9bd0969bc24570ca98fea5abae2454aa8858aeaa4ea66d003</citedby><cites>FETCH-LOGICAL-c316t-8ed3fe281e042c4f9bd0969bc24570ca98fea5abae2454aa8858aeaa4ea66d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-017-0102-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-017-0102-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Boros, Balázs</creatorcontrib><creatorcontrib>Hofbauer, Josef</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><title>On Global Stability of the Lotka Reactions with Generalized Mass-Action Kinetics</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>Chemical reaction networks with generalized mass-action kinetics lead to power-law dynamical systems. As a simple example, we consider the Lotka reactions with two chemical species and arbitrary power-law kinetics. We study existence, uniqueness, and stability of the positive equilibrium, in particular, we characterize its global asymptotic stability in terms of the kinetic orders.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Chemical reactions</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Kinetics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Reaction kinetics</subject><subject>Stability</subject><subject>Uniqueness</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1PwzAMhiMEEmPwA7hF4lxw2jRtjtMEAzEE4uMcua3LMko7kkxo_HoyxoELB8uW_b629TB2KuBcABQXXoCUkIAoYkCa6D02EnkRC8jUPhuBUEVSgtCH7Mj7JQBkWqkRe7jv-awbKuz4U8DKdjZs-NDysCA-H8Ib8kfCOtih9_zThgWfUU8OO_tFDb9D75PJz5Tf2p6Crf0xO2ix83Tym8fs5eryeXqdzO9nN9PJPKkzoUJSUpO1lJaCQKa1bHXVgFa6qlOZF1CjLlvCHCuk2JCIZZmXSIiSUKkmfj9mZ7u9Kzd8rMkHsxzWro8njdBZLjRInUWV2KlqN3jvqDUrZ9_RbYwAswVnduBMBGe24IyOnnTn8VHbv5L7s_lf0zeIYHBX</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Boros, Balázs</creator><creator>Hofbauer, Josef</creator><creator>Müller, Stefan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20171001</creationdate><title>On Global Stability of the Lotka Reactions with Generalized Mass-Action Kinetics</title><author>Boros, Balázs ; Hofbauer, Josef ; Müller, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8ed3fe281e042c4f9bd0969bc24570ca98fea5abae2454aa8858aeaa4ea66d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Chemical reactions</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Kinetics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Reaction kinetics</topic><topic>Stability</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boros, Balázs</creatorcontrib><creatorcontrib>Hofbauer, Josef</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boros, Balázs</au><au>Hofbauer, Josef</au><au>Müller, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Global Stability of the Lotka Reactions with Generalized Mass-Action Kinetics</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>151</volume><issue>1</issue><spage>53</spage><epage>80</epage><pages>53-80</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>Chemical reaction networks with generalized mass-action kinetics lead to power-law dynamical systems. As a simple example, we consider the Lotka reactions with two chemical species and arbitrary power-law kinetics. We study existence, uniqueness, and stability of the positive equilibrium, in particular, we characterize its global asymptotic stability in terms of the kinetic orders.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-017-0102-9</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2017-10, Vol.151 (1), p.53-80 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_journals_1935190493 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Asymptotic properties Calculus of Variations and Optimal Control Optimization Chemical reactions Computational Mathematics and Numerical Analysis Kinetics Mathematics Mathematics and Statistics Partial Differential Equations Probability Theory and Stochastic Processes Reaction kinetics Stability Uniqueness |
title | On Global Stability of the Lotka Reactions with Generalized Mass-Action Kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Global%20Stability%20of%20the%20Lotka%20Reactions%20with%20Generalized%20Mass-Action%20Kinetics&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Boros,%20Bal%C3%A1zs&rft.date=2017-10-01&rft.volume=151&rft.issue=1&rft.spage=53&rft.epage=80&rft.pages=53-80&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-017-0102-9&rft_dat=%3Cproquest_cross%3E1935190493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935190493&rft_id=info:pmid/&rfr_iscdi=true |