Solidification behavior of Co-Sn eutectic alloy with Nb addition
(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2017-02, Vol.695, p.1498-1504 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1504 |
---|---|
container_issue | |
container_start_page | 1498 |
container_title | Journal of alloys and compounds |
container_volume | 695 |
creator | Kang, J.L. Xu, W. Wei, X.X. Ferry, M. Li, J.F. |
description | (Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition.
[Display omitted]
•Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode. |
doi_str_mv | 10.1016/j.jallcom.2016.10.289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934951590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838816334211</els_id><sourcerecordid>1934951590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</originalsourceid><addsrcrecordid>eNqFUFtLwzAYDaLgnP4EIeBza9K0TfKkMrzB0Ifpc8iVpXTNTLrJ_r0p27tPH9_hXDgHgFuMSoxwe9-Vnex7HTZlld-MlRXjZ2CGGSVF3bb8HMwQr5qCEcYuwVVKHUIIc4Jn4HEVem-881qOPgxQ2bXc-xBhcHARitUA7W60evQa5oxwgL9-XMMPBaUxflJcgwsn-2RvTncOvl-evxZvxfLz9X3xtCw0IXQsnFRWImmlYhVjjCrqGOU1pUZqSphuDcG6UVbX3DJSUeMcQoQS3TBeK0zJHNwdfbcx_OxsGkUXdnHIkSI3qXmDG44yqzmydAwpRevENvqNjAeBkZjGEp04jSWmsSY4j5V1D0edzRX23kaRtLeDtsbH3F6Y4P9x-AMhQnUa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934951590</pqid></control><display><type>article</type><title>Solidification behavior of Co-Sn eutectic alloy with Nb addition</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, J.L. ; Xu, W. ; Wei, X.X. ; Ferry, M. ; Li, J.F.</creator><creatorcontrib>Kang, J.L. ; Xu, W. ; Wei, X.X. ; Ferry, M. ; Li, J.F.</creatorcontrib><description>(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition.
[Display omitted]
•Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2016.10.289</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Anisotropy ; Cobalt base alloys ; Crystal growth ; Dendritic structure ; Eutectic alloy ; Eutectic alloys ; Eutectics ; Interfacial energy ; Melts ; Microstructure ; Niobium ; Solidification ; Supercooling ; Third element ; Tin base alloys ; Transits</subject><ispartof>Journal of alloys and compounds, 2017-02, Vol.695, p.1498-1504</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 25, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</citedby><cites>FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838816334211$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kang, J.L.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Wei, X.X.</creatorcontrib><creatorcontrib>Ferry, M.</creatorcontrib><creatorcontrib>Li, J.F.</creatorcontrib><title>Solidification behavior of Co-Sn eutectic alloy with Nb addition</title><title>Journal of alloys and compounds</title><description>(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition.
[Display omitted]
•Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Cobalt base alloys</subject><subject>Crystal growth</subject><subject>Dendritic structure</subject><subject>Eutectic alloy</subject><subject>Eutectic alloys</subject><subject>Eutectics</subject><subject>Interfacial energy</subject><subject>Melts</subject><subject>Microstructure</subject><subject>Niobium</subject><subject>Solidification</subject><subject>Supercooling</subject><subject>Third element</subject><subject>Tin base alloys</subject><subject>Transits</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUFtLwzAYDaLgnP4EIeBza9K0TfKkMrzB0Ifpc8iVpXTNTLrJ_r0p27tPH9_hXDgHgFuMSoxwe9-Vnex7HTZlld-MlRXjZ2CGGSVF3bb8HMwQr5qCEcYuwVVKHUIIc4Jn4HEVem-881qOPgxQ2bXc-xBhcHARitUA7W60evQa5oxwgL9-XMMPBaUxflJcgwsn-2RvTncOvl-evxZvxfLz9X3xtCw0IXQsnFRWImmlYhVjjCrqGOU1pUZqSphuDcG6UVbX3DJSUeMcQoQS3TBeK0zJHNwdfbcx_OxsGkUXdnHIkSI3qXmDG44yqzmydAwpRevENvqNjAeBkZjGEp04jSWmsSY4j5V1D0edzRX23kaRtLeDtsbH3F6Y4P9x-AMhQnUa</recordid><startdate>20170225</startdate><enddate>20170225</enddate><creator>Kang, J.L.</creator><creator>Xu, W.</creator><creator>Wei, X.X.</creator><creator>Ferry, M.</creator><creator>Li, J.F.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170225</creationdate><title>Solidification behavior of Co-Sn eutectic alloy with Nb addition</title><author>Kang, J.L. ; Xu, W. ; Wei, X.X. ; Ferry, M. ; Li, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Cobalt base alloys</topic><topic>Crystal growth</topic><topic>Dendritic structure</topic><topic>Eutectic alloy</topic><topic>Eutectic alloys</topic><topic>Eutectics</topic><topic>Interfacial energy</topic><topic>Melts</topic><topic>Microstructure</topic><topic>Niobium</topic><topic>Solidification</topic><topic>Supercooling</topic><topic>Third element</topic><topic>Tin base alloys</topic><topic>Transits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, J.L.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Wei, X.X.</creatorcontrib><creatorcontrib>Ferry, M.</creatorcontrib><creatorcontrib>Li, J.F.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, J.L.</au><au>Xu, W.</au><au>Wei, X.X.</au><au>Ferry, M.</au><au>Li, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solidification behavior of Co-Sn eutectic alloy with Nb addition</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2017-02-25</date><risdate>2017</risdate><volume>695</volume><spage>1498</spage><epage>1504</epage><pages>1498-1504</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition.
[Display omitted]
•Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2016.10.289</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2017-02, Vol.695, p.1498-1504 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_1934951590 |
source | Elsevier ScienceDirect Journals |
subjects | Alloys Anisotropy Cobalt base alloys Crystal growth Dendritic structure Eutectic alloy Eutectic alloys Eutectics Interfacial energy Melts Microstructure Niobium Solidification Supercooling Third element Tin base alloys Transits |
title | Solidification behavior of Co-Sn eutectic alloy with Nb addition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solidification%20behavior%20of%20Co-Sn%20eutectic%20alloy%20with%20Nb%20addition&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Kang,%20J.L.&rft.date=2017-02-25&rft.volume=695&rft.spage=1498&rft.epage=1504&rft.pages=1498-1504&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2016.10.289&rft_dat=%3Cproquest_cross%3E1934951590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934951590&rft_id=info:pmid/&rft_els_id=S0925838816334211&rfr_iscdi=true |