Solidification behavior of Co-Sn eutectic alloy with Nb addition

(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2017-02, Vol.695, p.1498-1504
Hauptverfasser: Kang, J.L., Xu, W., Wei, X.X., Ferry, M., Li, J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1504
container_issue
container_start_page 1498
container_title Journal of alloys and compounds
container_volume 695
creator Kang, J.L.
Xu, W.
Wei, X.X.
Ferry, M.
Li, J.F.
description (Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition. [Display omitted] •Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode.
doi_str_mv 10.1016/j.jallcom.2016.10.289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934951590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838816334211</els_id><sourcerecordid>1934951590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</originalsourceid><addsrcrecordid>eNqFUFtLwzAYDaLgnP4EIeBza9K0TfKkMrzB0Ifpc8iVpXTNTLrJ_r0p27tPH9_hXDgHgFuMSoxwe9-Vnex7HTZlld-MlRXjZ2CGGSVF3bb8HMwQr5qCEcYuwVVKHUIIc4Jn4HEVem-881qOPgxQ2bXc-xBhcHARitUA7W60evQa5oxwgL9-XMMPBaUxflJcgwsn-2RvTncOvl-evxZvxfLz9X3xtCw0IXQsnFRWImmlYhVjjCrqGOU1pUZqSphuDcG6UVbX3DJSUeMcQoQS3TBeK0zJHNwdfbcx_OxsGkUXdnHIkSI3qXmDG44yqzmydAwpRevENvqNjAeBkZjGEp04jSWmsSY4j5V1D0edzRX23kaRtLeDtsbH3F6Y4P9x-AMhQnUa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934951590</pqid></control><display><type>article</type><title>Solidification behavior of Co-Sn eutectic alloy with Nb addition</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, J.L. ; Xu, W. ; Wei, X.X. ; Ferry, M. ; Li, J.F.</creator><creatorcontrib>Kang, J.L. ; Xu, W. ; Wei, X.X. ; Ferry, M. ; Li, J.F.</creatorcontrib><description>(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition. [Display omitted] •Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2016.10.289</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Anisotropy ; Cobalt base alloys ; Crystal growth ; Dendritic structure ; Eutectic alloy ; Eutectic alloys ; Eutectics ; Interfacial energy ; Melts ; Microstructure ; Niobium ; Solidification ; Supercooling ; Third element ; Tin base alloys ; Transits</subject><ispartof>Journal of alloys and compounds, 2017-02, Vol.695, p.1498-1504</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 25, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</citedby><cites>FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838816334211$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kang, J.L.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Wei, X.X.</creatorcontrib><creatorcontrib>Ferry, M.</creatorcontrib><creatorcontrib>Li, J.F.</creatorcontrib><title>Solidification behavior of Co-Sn eutectic alloy with Nb addition</title><title>Journal of alloys and compounds</title><description>(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition. [Display omitted] •Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Cobalt base alloys</subject><subject>Crystal growth</subject><subject>Dendritic structure</subject><subject>Eutectic alloy</subject><subject>Eutectic alloys</subject><subject>Eutectics</subject><subject>Interfacial energy</subject><subject>Melts</subject><subject>Microstructure</subject><subject>Niobium</subject><subject>Solidification</subject><subject>Supercooling</subject><subject>Third element</subject><subject>Tin base alloys</subject><subject>Transits</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUFtLwzAYDaLgnP4EIeBza9K0TfKkMrzB0Ifpc8iVpXTNTLrJ_r0p27tPH9_hXDgHgFuMSoxwe9-Vnex7HTZlld-MlRXjZ2CGGSVF3bb8HMwQr5qCEcYuwVVKHUIIc4Jn4HEVem-881qOPgxQ2bXc-xBhcHARitUA7W60evQa5oxwgL9-XMMPBaUxflJcgwsn-2RvTncOvl-evxZvxfLz9X3xtCw0IXQsnFRWImmlYhVjjCrqGOU1pUZqSphuDcG6UVbX3DJSUeMcQoQS3TBeK0zJHNwdfbcx_OxsGkUXdnHIkSI3qXmDG44yqzmydAwpRevENvqNjAeBkZjGEp04jSWmsSY4j5V1D0edzRX23kaRtLeDtsbH3F6Y4P9x-AMhQnUa</recordid><startdate>20170225</startdate><enddate>20170225</enddate><creator>Kang, J.L.</creator><creator>Xu, W.</creator><creator>Wei, X.X.</creator><creator>Ferry, M.</creator><creator>Li, J.F.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170225</creationdate><title>Solidification behavior of Co-Sn eutectic alloy with Nb addition</title><author>Kang, J.L. ; Xu, W. ; Wei, X.X. ; Ferry, M. ; Li, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-fabea0aeab828887b7f879477dac738c6d31c5bec49e8327dff00373c5894b173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Cobalt base alloys</topic><topic>Crystal growth</topic><topic>Dendritic structure</topic><topic>Eutectic alloy</topic><topic>Eutectic alloys</topic><topic>Eutectics</topic><topic>Interfacial energy</topic><topic>Melts</topic><topic>Microstructure</topic><topic>Niobium</topic><topic>Solidification</topic><topic>Supercooling</topic><topic>Third element</topic><topic>Tin base alloys</topic><topic>Transits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, J.L.</creatorcontrib><creatorcontrib>Xu, W.</creatorcontrib><creatorcontrib>Wei, X.X.</creatorcontrib><creatorcontrib>Ferry, M.</creatorcontrib><creatorcontrib>Li, J.F.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, J.L.</au><au>Xu, W.</au><au>Wei, X.X.</au><au>Ferry, M.</au><au>Li, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solidification behavior of Co-Sn eutectic alloy with Nb addition</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2017-02-25</date><risdate>2017</risdate><volume>695</volume><spage>1498</spage><epage>1504</epage><pages>1498-1504</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>(Co76Sn24)100-xNbx (x = 0, 0.5, 0.8, 1.0) eutectic alloy melts were solidified at small undercooling for investigating the effect of Nb addition on microstructural development. With increasing Nb content, the solidification interface transits from eutectic seaweed (x = 0) to eutectic dendrite (x = 0.5) as a response to the change in the anisotropy of interfacial energy. Coupled eutectic growth can no longer be maintained within the main stems at x = 0.8 because the enrichment of Nb in the liquid ahead of the interface causes a significant difference in growth velocity between the α-Co and β-Co3Sn2 phases and, as such, Co3Sn2 doublons form. For x = 1.0, the difference in growth kinetics between the two eutectic phases is so large that divorced eutectic growth takes place on a large scale. Letting the undercooling prior to solidification increase, the eutectic interface morphology of (Co76Sn24)99.5Nb0.5 eutectic alloys returns from dendritic pattern back to factual seaweed pattern at more than 38 K undercooling and then transits to compact seaweed pattern at more than 181 K undercooling. The eutectic growth velocity slightly increases at low and intermediate undercooling but obviously decreases at large undercooling due with Nb addition. [Display omitted] •Co76Sn24 eutectic alloy with different Nb additions was undercooled and solidified.•Transition from seaweed to dendritic eutectic growth occurs due to 0.5 at % Nb addition.•Co3Sn2 doublons form in the microstructures with more Nb added.•Interface energy anisotropy and solute distribution dominate the crystal growth mode.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2016.10.289</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2017-02, Vol.695, p.1498-1504
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_1934951590
source Elsevier ScienceDirect Journals
subjects Alloys
Anisotropy
Cobalt base alloys
Crystal growth
Dendritic structure
Eutectic alloy
Eutectic alloys
Eutectics
Interfacial energy
Melts
Microstructure
Niobium
Solidification
Supercooling
Third element
Tin base alloys
Transits
title Solidification behavior of Co-Sn eutectic alloy with Nb addition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solidification%20behavior%20of%20Co-Sn%20eutectic%20alloy%20with%20Nb%20addition&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Kang,%20J.L.&rft.date=2017-02-25&rft.volume=695&rft.spage=1498&rft.epage=1504&rft.pages=1498-1504&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2016.10.289&rft_dat=%3Cproquest_cross%3E1934951590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934951590&rft_id=info:pmid/&rft_els_id=S0925838816334211&rfr_iscdi=true