Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification
In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propaga...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2017-09, Vol.49 (9), p.1-15, Article 313 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Optical and quantum electronics |
container_volume | 49 |
creator | Helfert, Stefan F. Seiler, Thomas Jahns, Jürgen Becker, Jing Jakobs, Peter Bacher, Andreas |
description | In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task. |
doi_str_mv | 10.1007/s11082-017-1153-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934594657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934594657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19G8NG3SpQx-waAbBXchTdOxQ6fpJO18-OtNqQs3rh6Bc-57uQhdA70FSsVdAKCSEQqCAKQJOZygGaSCEQni8xTNaEIzInPIz9FFCGtKacZTOkPb12FjfW10g0O9GRrd167FrsJfrmncHu_1zq6GurRYe6-PAeuAO9doX39PqHHtzvq-blfYNnZj2z4ybYntoYu54ztGR6Ku4pLRuERnlW6Cvfqdc_Tx-PC-eCbLt6eXxf2SmASynshMplAyIzPNgeqcAeXcFiCM5YUpqMmqshJQFZxxluZcC5HliZSsZDT-LE3m6GbK7bzbDjb0au0G38aVCvKERyVLRaRgoox3IXhbqS5erf1RAVVjs2pqVsVm1disOkSHTU6IbLuy_k_yv9IPHZl-Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934594657</pqid></control><display><type>article</type><title>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</title><source>SpringerNature Journals</source><creator>Helfert, Stefan F. ; Seiler, Thomas ; Jahns, Jürgen ; Becker, Jing ; Jakobs, Peter ; Bacher, Andreas</creator><creatorcontrib>Helfert, Stefan F. ; Seiler, Thomas ; Jahns, Jürgen ; Becker, Jing ; Jakobs, Peter ; Bacher, Andreas</creatorcontrib><description>In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-017-1153-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Computer simulation ; Conversion ; Cross-sections ; Eigenvectors ; Electrical Engineering ; Electron beam lithography ; Lasers ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Method of lines ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Polarization ; Waveguides</subject><ispartof>Optical and quantum electronics, 2017-09, Vol.49 (9), p.1-15, Article 313</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</citedby><cites>FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</cites><orcidid>0000-0003-3121-336X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-017-1153-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-017-1153-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Helfert, Stefan F.</creatorcontrib><creatorcontrib>Seiler, Thomas</creatorcontrib><creatorcontrib>Jahns, Jürgen</creatorcontrib><creatorcontrib>Becker, Jing</creatorcontrib><creatorcontrib>Jakobs, Peter</creatorcontrib><creatorcontrib>Bacher, Andreas</creatorcontrib><title>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Conversion</subject><subject>Cross-sections</subject><subject>Eigenvectors</subject><subject>Electrical Engineering</subject><subject>Electron beam lithography</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Method of lines</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Waveguides</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19G8NG3SpQx-waAbBXchTdOxQ6fpJO18-OtNqQs3rh6Bc-57uQhdA70FSsVdAKCSEQqCAKQJOZygGaSCEQni8xTNaEIzInPIz9FFCGtKacZTOkPb12FjfW10g0O9GRrd167FrsJfrmncHu_1zq6GurRYe6-PAeuAO9doX39PqHHtzvq-blfYNnZj2z4ybYntoYu54ztGR6Ku4pLRuERnlW6Cvfqdc_Tx-PC-eCbLt6eXxf2SmASynshMplAyIzPNgeqcAeXcFiCM5YUpqMmqshJQFZxxluZcC5HliZSsZDT-LE3m6GbK7bzbDjb0au0G38aVCvKERyVLRaRgoox3IXhbqS5erf1RAVVjs2pqVsVm1disOkSHTU6IbLuy_k_yv9IPHZl-Uw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Helfert, Stefan F.</creator><creator>Seiler, Thomas</creator><creator>Jahns, Jürgen</creator><creator>Becker, Jing</creator><creator>Jakobs, Peter</creator><creator>Bacher, Andreas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3121-336X</orcidid></search><sort><creationdate>20170901</creationdate><title>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</title><author>Helfert, Stefan F. ; Seiler, Thomas ; Jahns, Jürgen ; Becker, Jing ; Jakobs, Peter ; Bacher, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Conversion</topic><topic>Cross-sections</topic><topic>Eigenvectors</topic><topic>Electrical Engineering</topic><topic>Electron beam lithography</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Method of lines</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helfert, Stefan F.</creatorcontrib><creatorcontrib>Seiler, Thomas</creatorcontrib><creatorcontrib>Jahns, Jürgen</creatorcontrib><creatorcontrib>Becker, Jing</creatorcontrib><creatorcontrib>Jakobs, Peter</creatorcontrib><creatorcontrib>Bacher, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helfert, Stefan F.</au><au>Seiler, Thomas</au><au>Jahns, Jürgen</au><au>Becker, Jing</au><au>Jakobs, Peter</au><au>Bacher, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>49</volume><issue>9</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>313</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-017-1153-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3121-336X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2017-09, Vol.49 (9), p.1-15, Article 313 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_1934594657 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Computer simulation Conversion Cross-sections Eigenvectors Electrical Engineering Electron beam lithography Lasers Mathematical analysis Matrix algebra Matrix methods Method of lines Optical Devices Optics Photonics Physics Physics and Astronomy Polarization Waveguides |
title | Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20hollow%20waveguide%20arrays%20as%20polarization%20converting%20elements%20and%20experimental%20verification&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Helfert,%20Stefan%20F.&rft.date=2017-09-01&rft.volume=49&rft.issue=9&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=313&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-017-1153-x&rft_dat=%3Cproquest_cross%3E1934594657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934594657&rft_id=info:pmid/&rfr_iscdi=true |