Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification

In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propaga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2017-09, Vol.49 (9), p.1-15, Article 313
Hauptverfasser: Helfert, Stefan F., Seiler, Thomas, Jahns, Jürgen, Becker, Jing, Jakobs, Peter, Bacher, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 9
container_start_page 1
container_title Optical and quantum electronics
container_volume 49
creator Helfert, Stefan F.
Seiler, Thomas
Jahns, Jürgen
Becker, Jing
Jakobs, Peter
Bacher, Andreas
description In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.
doi_str_mv 10.1007/s11082-017-1153-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934594657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934594657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19G8NG3SpQx-waAbBXchTdOxQ6fpJO18-OtNqQs3rh6Bc-57uQhdA70FSsVdAKCSEQqCAKQJOZygGaSCEQni8xTNaEIzInPIz9FFCGtKacZTOkPb12FjfW10g0O9GRrd167FrsJfrmncHu_1zq6GurRYe6-PAeuAO9doX39PqHHtzvq-blfYNnZj2z4ybYntoYu54ztGR6Ku4pLRuERnlW6Cvfqdc_Tx-PC-eCbLt6eXxf2SmASynshMplAyIzPNgeqcAeXcFiCM5YUpqMmqshJQFZxxluZcC5HliZSsZDT-LE3m6GbK7bzbDjb0au0G38aVCvKERyVLRaRgoox3IXhbqS5erf1RAVVjs2pqVsVm1disOkSHTU6IbLuy_k_yv9IPHZl-Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934594657</pqid></control><display><type>article</type><title>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</title><source>SpringerNature Journals</source><creator>Helfert, Stefan F. ; Seiler, Thomas ; Jahns, Jürgen ; Becker, Jing ; Jakobs, Peter ; Bacher, Andreas</creator><creatorcontrib>Helfert, Stefan F. ; Seiler, Thomas ; Jahns, Jürgen ; Becker, Jing ; Jakobs, Peter ; Bacher, Andreas</creatorcontrib><description>In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-017-1153-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Computer simulation ; Conversion ; Cross-sections ; Eigenvectors ; Electrical Engineering ; Electron beam lithography ; Lasers ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Method of lines ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Polarization ; Waveguides</subject><ispartof>Optical and quantum electronics, 2017-09, Vol.49 (9), p.1-15, Article 313</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</citedby><cites>FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</cites><orcidid>0000-0003-3121-336X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-017-1153-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-017-1153-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Helfert, Stefan F.</creatorcontrib><creatorcontrib>Seiler, Thomas</creatorcontrib><creatorcontrib>Jahns, Jürgen</creatorcontrib><creatorcontrib>Becker, Jing</creatorcontrib><creatorcontrib>Jakobs, Peter</creatorcontrib><creatorcontrib>Bacher, Andreas</creatorcontrib><title>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Conversion</subject><subject>Cross-sections</subject><subject>Eigenvectors</subject><subject>Electrical Engineering</subject><subject>Electron beam lithography</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Method of lines</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Waveguides</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19G8NG3SpQx-waAbBXchTdOxQ6fpJO18-OtNqQs3rh6Bc-57uQhdA70FSsVdAKCSEQqCAKQJOZygGaSCEQni8xTNaEIzInPIz9FFCGtKacZTOkPb12FjfW10g0O9GRrd167FrsJfrmncHu_1zq6GurRYe6-PAeuAO9doX39PqHHtzvq-blfYNnZj2z4ybYntoYu54ztGR6Ku4pLRuERnlW6Cvfqdc_Tx-PC-eCbLt6eXxf2SmASynshMplAyIzPNgeqcAeXcFiCM5YUpqMmqshJQFZxxluZcC5HliZSsZDT-LE3m6GbK7bzbDjb0au0G38aVCvKERyVLRaRgoox3IXhbqS5erf1RAVVjs2pqVsVm1disOkSHTU6IbLuy_k_yv9IPHZl-Uw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Helfert, Stefan F.</creator><creator>Seiler, Thomas</creator><creator>Jahns, Jürgen</creator><creator>Becker, Jing</creator><creator>Jakobs, Peter</creator><creator>Bacher, Andreas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3121-336X</orcidid></search><sort><creationdate>20170901</creationdate><title>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</title><author>Helfert, Stefan F. ; Seiler, Thomas ; Jahns, Jürgen ; Becker, Jing ; Jakobs, Peter ; Bacher, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86851d2c86a410a921044eb17ce4bcb0c6fdf71fb4242594a77693882d2045053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Conversion</topic><topic>Cross-sections</topic><topic>Eigenvectors</topic><topic>Electrical Engineering</topic><topic>Electron beam lithography</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Method of lines</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helfert, Stefan F.</creatorcontrib><creatorcontrib>Seiler, Thomas</creatorcontrib><creatorcontrib>Jahns, Jürgen</creatorcontrib><creatorcontrib>Becker, Jing</creatorcontrib><creatorcontrib>Jakobs, Peter</creatorcontrib><creatorcontrib>Bacher, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helfert, Stefan F.</au><au>Seiler, Thomas</au><au>Jahns, Jürgen</au><au>Becker, Jing</au><au>Jakobs, Peter</au><au>Bacher, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>49</volume><issue>9</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>313</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this paper we study the characteristics of hollow waveguides that are used as polarization converting elements. In particular, numerical simulations are compared with experiments where a good agreement is found. The numerical simulations are performed with the Method of Lines—an eigenmode propagation algorithm where the eigenmodes are computed after a discretization in the cross-section. Due to the vectorial 3D-problem, extensions of the standard algorithm were required to keep the numerical effort low. Particularly, only a reduced set of eigenmodes is used in the computations and inverting rectangular matrices is done with the help of left eigenvectors. Further, it is shown how these left eigenvectors can be determined with simple matrix vector products, i.e., at very low numerical cost. The fabrication of the device is very demanding because of a very high ratio between the metal width and its height. Here, direct electron-beam lithography is used for this task.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-017-1153-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3121-336X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2017-09, Vol.49 (9), p.1-15, Article 313
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_1934594657
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Computer simulation
Conversion
Cross-sections
Eigenvectors
Electrical Engineering
Electron beam lithography
Lasers
Mathematical analysis
Matrix algebra
Matrix methods
Method of lines
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Polarization
Waveguides
title Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20hollow%20waveguide%20arrays%20as%20polarization%20converting%20elements%20and%20experimental%20verification&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Helfert,%20Stefan%20F.&rft.date=2017-09-01&rft.volume=49&rft.issue=9&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=313&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-017-1153-x&rft_dat=%3Cproquest_cross%3E1934594657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934594657&rft_id=info:pmid/&rfr_iscdi=true