Noncooperative Information Diffusion in Online Social Networks Under the Independent Cascade Model

In this paper, we present the first detailed analysis of influence maximization in noncooperative social networks under the Independent Cascade Model (ICM). We propose a new influence model based on the ICM and prove the approximation guarantees for influence maximization in noncooperative settings....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2017-09, Vol.4 (3), p.150-162
Hauptverfasser: Yile Yang, Zhiyi Lu, Li, Victor O. K., Kuang Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 3
container_start_page 150
container_title IEEE transactions on computational social systems
container_volume 4
creator Yile Yang
Zhiyi Lu
Li, Victor O. K.
Kuang Xu
description In this paper, we present the first detailed analysis of influence maximization in noncooperative social networks under the Independent Cascade Model (ICM). We propose a new influence model based on the ICM and prove the approximation guarantees for influence maximization in noncooperative settings. We structure the influence diffusion into two stages, namely, seed node selection and influence diffusion. In the former, we introduce a modified hierarchy-based seed node selection strategy, which can take node noncooperation into consideration. In the latter, we propose a game-theoretic model to characterize the behavior of noncooperative nodes and design a Vickrey- Clarke-Groves (VCG)-like scheme to incentivise cooperation. Then, we study the budget allocation problem between the two stages, and show that a marketer can utilize the two proposed strategies to tackle noncooperation intelligently. We evaluate our proposed schemes on large coauthorship networks, and the results show that our seed node selection scheme is very robust to noncooperation and the VCG-like scheme can effectively stimulate a node to become cooperative.
doi_str_mv 10.1109/TCSS.2017.2719056
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1934558289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8008788</ieee_id><sourcerecordid>1934558289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-63c6af0f042d8633d91a96a16705b8b0f2e1a8c0fb429d09807fedf2f323fa613</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsNT-APES8Nw6SfYjOcr6VajtoS14W7KbCW7dJmuyVfz37tIiXmbew_POwBNF1xRmlIK82-Tr9YwBzWYsoxKS9CwaMc7kVLL47fxfvowmIewAgLIkyRiMonLpbOVci1519ReSuTXO7_vsLHmojTmEIdWWrGxTWyRrV9WqIUvsvp3_CGRrNXrSvQ9NjS32w3YkV6FSGsmr09hcRRdGNQEnpz2Otk-Pm_xlulg9z_P7xbRiknfTlFepMmAgZlqknGtJlUwVTTNISlGCYUiVqMCUMZMapIDMoDbMcMaNSikfR7fHu613nwcMXbFzB2_7lwWVPE4SwYTsKXqkKu9C8GiK1td75X8KCsVgsxhsFoPN4mSz79wcOzUi_vECQGRC8F_GEXE7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934558289</pqid></control><display><type>article</type><title>Noncooperative Information Diffusion in Online Social Networks Under the Independent Cascade Model</title><source>IEEE Electronic Library (IEL)</source><creator>Yile Yang ; Zhiyi Lu ; Li, Victor O. K. ; Kuang Xu</creator><creatorcontrib>Yile Yang ; Zhiyi Lu ; Li, Victor O. K. ; Kuang Xu</creatorcontrib><description>In this paper, we present the first detailed analysis of influence maximization in noncooperative social networks under the Independent Cascade Model (ICM). We propose a new influence model based on the ICM and prove the approximation guarantees for influence maximization in noncooperative settings. We structure the influence diffusion into two stages, namely, seed node selection and influence diffusion. In the former, we introduce a modified hierarchy-based seed node selection strategy, which can take node noncooperation into consideration. In the latter, we propose a game-theoretic model to characterize the behavior of noncooperative nodes and design a Vickrey- Clarke-Groves (VCG)-like scheme to incentivise cooperation. Then, we study the budget allocation problem between the two stages, and show that a marketer can utilize the two proposed strategies to tackle noncooperation intelligently. We evaluate our proposed schemes on large coauthorship networks, and the results show that our seed node selection scheme is very robust to noncooperation and the VCG-like scheme can effectively stimulate a node to become cooperative.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2017.2719056</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithm design and analysis ; Cooperative ; Diffusion processes ; Economic models ; Game theory ; Greedy algorithms ; Incentive schemes ; influence maximization ; Information dissemination ; Maximization ; Peer-to-peer computing ; Resource management ; social network ; Social network services ; Social networks</subject><ispartof>IEEE transactions on computational social systems, 2017-09, Vol.4 (3), p.150-162</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-63c6af0f042d8633d91a96a16705b8b0f2e1a8c0fb429d09807fedf2f323fa613</citedby><cites>FETCH-LOGICAL-c293t-63c6af0f042d8633d91a96a16705b8b0f2e1a8c0fb429d09807fedf2f323fa613</cites><orcidid>0000-0002-7607-0828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8008788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8008788$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yile Yang</creatorcontrib><creatorcontrib>Zhiyi Lu</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Kuang Xu</creatorcontrib><title>Noncooperative Information Diffusion in Online Social Networks Under the Independent Cascade Model</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>In this paper, we present the first detailed analysis of influence maximization in noncooperative social networks under the Independent Cascade Model (ICM). We propose a new influence model based on the ICM and prove the approximation guarantees for influence maximization in noncooperative settings. We structure the influence diffusion into two stages, namely, seed node selection and influence diffusion. In the former, we introduce a modified hierarchy-based seed node selection strategy, which can take node noncooperation into consideration. In the latter, we propose a game-theoretic model to characterize the behavior of noncooperative nodes and design a Vickrey- Clarke-Groves (VCG)-like scheme to incentivise cooperation. Then, we study the budget allocation problem between the two stages, and show that a marketer can utilize the two proposed strategies to tackle noncooperation intelligently. We evaluate our proposed schemes on large coauthorship networks, and the results show that our seed node selection scheme is very robust to noncooperation and the VCG-like scheme can effectively stimulate a node to become cooperative.</description><subject>Algorithm design and analysis</subject><subject>Cooperative</subject><subject>Diffusion processes</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Greedy algorithms</subject><subject>Incentive schemes</subject><subject>influence maximization</subject><subject>Information dissemination</subject><subject>Maximization</subject><subject>Peer-to-peer computing</subject><subject>Resource management</subject><subject>social network</subject><subject>Social network services</subject><subject>Social networks</subject><issn>2329-924X</issn><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhhdRsNT-APES8Nw6SfYjOcr6VajtoS14W7KbCW7dJmuyVfz37tIiXmbew_POwBNF1xRmlIK82-Tr9YwBzWYsoxKS9CwaMc7kVLL47fxfvowmIewAgLIkyRiMonLpbOVci1519ReSuTXO7_vsLHmojTmEIdWWrGxTWyRrV9WqIUvsvp3_CGRrNXrSvQ9NjS32w3YkV6FSGsmr09hcRRdGNQEnpz2Otk-Pm_xlulg9z_P7xbRiknfTlFepMmAgZlqknGtJlUwVTTNISlGCYUiVqMCUMZMapIDMoDbMcMaNSikfR7fHu613nwcMXbFzB2_7lwWVPE4SwYTsKXqkKu9C8GiK1td75X8KCsVgsxhsFoPN4mSz79wcOzUi_vECQGRC8F_GEXE7</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Yile Yang</creator><creator>Zhiyi Lu</creator><creator>Li, Victor O. K.</creator><creator>Kuang Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7607-0828</orcidid></search><sort><creationdate>20170901</creationdate><title>Noncooperative Information Diffusion in Online Social Networks Under the Independent Cascade Model</title><author>Yile Yang ; Zhiyi Lu ; Li, Victor O. K. ; Kuang Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-63c6af0f042d8633d91a96a16705b8b0f2e1a8c0fb429d09807fedf2f323fa613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Cooperative</topic><topic>Diffusion processes</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Greedy algorithms</topic><topic>Incentive schemes</topic><topic>influence maximization</topic><topic>Information dissemination</topic><topic>Maximization</topic><topic>Peer-to-peer computing</topic><topic>Resource management</topic><topic>social network</topic><topic>Social network services</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yile Yang</creatorcontrib><creatorcontrib>Zhiyi Lu</creatorcontrib><creatorcontrib>Li, Victor O. K.</creatorcontrib><creatorcontrib>Kuang Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yile Yang</au><au>Zhiyi Lu</au><au>Li, Victor O. K.</au><au>Kuang Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncooperative Information Diffusion in Online Social Networks Under the Independent Cascade Model</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>4</volume><issue>3</issue><spage>150</spage><epage>162</epage><pages>150-162</pages><issn>2329-924X</issn><eissn>2329-924X</eissn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>In this paper, we present the first detailed analysis of influence maximization in noncooperative social networks under the Independent Cascade Model (ICM). We propose a new influence model based on the ICM and prove the approximation guarantees for influence maximization in noncooperative settings. We structure the influence diffusion into two stages, namely, seed node selection and influence diffusion. In the former, we introduce a modified hierarchy-based seed node selection strategy, which can take node noncooperation into consideration. In the latter, we propose a game-theoretic model to characterize the behavior of noncooperative nodes and design a Vickrey- Clarke-Groves (VCG)-like scheme to incentivise cooperation. Then, we study the budget allocation problem between the two stages, and show that a marketer can utilize the two proposed strategies to tackle noncooperation intelligently. We evaluate our proposed schemes on large coauthorship networks, and the results show that our seed node selection scheme is very robust to noncooperation and the VCG-like scheme can effectively stimulate a node to become cooperative.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2017.2719056</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7607-0828</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2017-09, Vol.4 (3), p.150-162
issn 2329-924X
2329-924X
2373-7476
language eng
recordid cdi_proquest_journals_1934558289
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Cooperative
Diffusion processes
Economic models
Game theory
Greedy algorithms
Incentive schemes
influence maximization
Information dissemination
Maximization
Peer-to-peer computing
Resource management
social network
Social network services
Social networks
title Noncooperative Information Diffusion in Online Social Networks Under the Independent Cascade Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncooperative%20Information%20Diffusion%20in%20Online%20Social%20Networks%20Under%20the%20Independent%20Cascade%20Model&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Yile%20Yang&rft.date=2017-09-01&rft.volume=4&rft.issue=3&rft.spage=150&rft.epage=162&rft.pages=150-162&rft.issn=2329-924X&rft.eissn=2329-924X&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2017.2719056&rft_dat=%3Cproquest_RIE%3E1934558289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934558289&rft_id=info:pmid/&rft_ieee_id=8008788&rfr_iscdi=true