Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging
High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2017-09, Vol.64 (9), p.1276-1284 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1284 |
---|---|
container_issue | 9 |
container_start_page | 1276 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 64 |
creator | Boni, Enrico Bassi, Luca Dallai, Alessandro Meacci, Valentino Ramalli, Alessandro Scaringella, Monica Guidi, Francesco Ricci, Stefano Tortoli, Piero |
description | High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented. |
doi_str_mv | 10.1109/TUFFC.2017.2727980 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934548214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7987023</ieee_id><sourcerecordid>1923106149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRtFb_gIIsePGSOvuV3RylWCsUhNqcwyaZ1Eg-dDc59N-72urB0wzM8w4vDyFXDGaMQXK_SReL-YwD0zOuuU4MHJEJU1xFJlHqmEzAGBUJYHBGzr1_B2BSJvyUnHGjJQfBJyR9cMVbPWAxjA5pX1Hb0bQZnPX92JX0decHbGnVOzrvu6Huxn70dI22iTZ1i3RZb9_owtmwru2A9Lm127rbXpCTyjYeLw9zStLF42a-jFYvT8_zh1VUSM6GyMZxKG3KQgihSiNylQtlNZZGgtEQc1XqokJdCS0AgeeVzi2TLM8rZfPCiCm52__9cP3niH7I2toX2DS2w1A0YwkXDGImk4De_kPf-9F1oV2ghFTScCYDxfdU4XrvHVbZh6tb63YZg-xbevYjPfuWnh2kh9DN4fWYt1j-RX4tB-B6D9SI-HcOWQ1ciC_6HYSd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934548214</pqid></control><display><type>article</type><title>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</title><source>IEEE Xplore</source><creator>Boni, Enrico ; Bassi, Luca ; Dallai, Alessandro ; Meacci, Valentino ; Ramalli, Alessandro ; Scaringella, Monica ; Guidi, Francesco ; Ricci, Stefano ; Tortoli, Piero</creator><creatorcontrib>Boni, Enrico ; Bassi, Luca ; Dallai, Alessandro ; Meacci, Valentino ; Ramalli, Alessandro ; Scaringella, Monica ; Guidi, Francesco ; Ricci, Stefano ; Tortoli, Piero</creatorcontrib><description>High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2017.2727980</identifier><identifier>PMID: 28742032</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Array signal processing ; Digital signal processing ; Field programmable gate arrays ; High frame rate (HFR) ; Image acquisition ; Image transmission ; Imaging ; Ion beams ; Iron ; plane wave imaging ; Plane waves ; Radio frequency ; Real time ; Real-time systems ; ULA-OP ; Ultrasonic imaging ; Ultrasonic scanners</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-09, Vol.64 (9), p.1276-1284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</citedby><cites>FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</cites><orcidid>0000-0002-7984-3128 ; 0000-0002-9899-8782 ; 0000-0002-7410-6057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7987023$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28742032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boni, Enrico</creatorcontrib><creatorcontrib>Bassi, Luca</creatorcontrib><creatorcontrib>Dallai, Alessandro</creatorcontrib><creatorcontrib>Meacci, Valentino</creatorcontrib><creatorcontrib>Ramalli, Alessandro</creatorcontrib><creatorcontrib>Scaringella, Monica</creatorcontrib><creatorcontrib>Guidi, Francesco</creatorcontrib><creatorcontrib>Ricci, Stefano</creatorcontrib><creatorcontrib>Tortoli, Piero</creatorcontrib><title>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.</description><subject>Array signal processing</subject><subject>Digital signal processing</subject><subject>Field programmable gate arrays</subject><subject>High frame rate (HFR)</subject><subject>Image acquisition</subject><subject>Image transmission</subject><subject>Imaging</subject><subject>Ion beams</subject><subject>Iron</subject><subject>plane wave imaging</subject><subject>Plane waves</subject><subject>Radio frequency</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>ULA-OP</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic scanners</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRtFb_gIIsePGSOvuV3RylWCsUhNqcwyaZ1Eg-dDc59N-72urB0wzM8w4vDyFXDGaMQXK_SReL-YwD0zOuuU4MHJEJU1xFJlHqmEzAGBUJYHBGzr1_B2BSJvyUnHGjJQfBJyR9cMVbPWAxjA5pX1Hb0bQZnPX92JX0decHbGnVOzrvu6Huxn70dI22iTZ1i3RZb9_owtmwru2A9Lm127rbXpCTyjYeLw9zStLF42a-jFYvT8_zh1VUSM6GyMZxKG3KQgihSiNylQtlNZZGgtEQc1XqokJdCS0AgeeVzi2TLM8rZfPCiCm52__9cP3niH7I2toX2DS2w1A0YwkXDGImk4De_kPf-9F1oV2ghFTScCYDxfdU4XrvHVbZh6tb63YZg-xbevYjPfuWnh2kh9DN4fWYt1j-RX4tB-B6D9SI-HcOWQ1ciC_6HYSd</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Boni, Enrico</creator><creator>Bassi, Luca</creator><creator>Dallai, Alessandro</creator><creator>Meacci, Valentino</creator><creator>Ramalli, Alessandro</creator><creator>Scaringella, Monica</creator><creator>Guidi, Francesco</creator><creator>Ricci, Stefano</creator><creator>Tortoli, Piero</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7984-3128</orcidid><orcidid>https://orcid.org/0000-0002-9899-8782</orcidid><orcidid>https://orcid.org/0000-0002-7410-6057</orcidid></search><sort><creationdate>20170901</creationdate><title>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</title><author>Boni, Enrico ; Bassi, Luca ; Dallai, Alessandro ; Meacci, Valentino ; Ramalli, Alessandro ; Scaringella, Monica ; Guidi, Francesco ; Ricci, Stefano ; Tortoli, Piero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Array signal processing</topic><topic>Digital signal processing</topic><topic>Field programmable gate arrays</topic><topic>High frame rate (HFR)</topic><topic>Image acquisition</topic><topic>Image transmission</topic><topic>Imaging</topic><topic>Ion beams</topic><topic>Iron</topic><topic>plane wave imaging</topic><topic>Plane waves</topic><topic>Radio frequency</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>ULA-OP</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic scanners</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boni, Enrico</creatorcontrib><creatorcontrib>Bassi, Luca</creatorcontrib><creatorcontrib>Dallai, Alessandro</creatorcontrib><creatorcontrib>Meacci, Valentino</creatorcontrib><creatorcontrib>Ramalli, Alessandro</creatorcontrib><creatorcontrib>Scaringella, Monica</creatorcontrib><creatorcontrib>Guidi, Francesco</creatorcontrib><creatorcontrib>Ricci, Stefano</creatorcontrib><creatorcontrib>Tortoli, Piero</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boni, Enrico</au><au>Bassi, Luca</au><au>Dallai, Alessandro</au><au>Meacci, Valentino</au><au>Ramalli, Alessandro</au><au>Scaringella, Monica</au><au>Guidi, Francesco</au><au>Ricci, Stefano</au><au>Tortoli, Piero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>64</volume><issue>9</issue><spage>1276</spage><epage>1284</epage><pages>1276-1284</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28742032</pmid><doi>10.1109/TUFFC.2017.2727980</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7984-3128</orcidid><orcidid>https://orcid.org/0000-0002-9899-8782</orcidid><orcidid>https://orcid.org/0000-0002-7410-6057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-09, Vol.64 (9), p.1276-1284 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_journals_1934548214 |
source | IEEE Xplore |
subjects | Array signal processing Digital signal processing Field programmable gate arrays High frame rate (HFR) Image acquisition Image transmission Imaging Ion beams Iron plane wave imaging Plane waves Radio frequency Real time Real-time systems ULA-OP Ultrasonic imaging Ultrasonic scanners |
title | Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20of%20an%20Ultrasound%20System%20for%20Continuous%20Real-Time%20High%20Frame%20Rate%20Imaging&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Boni,%20Enrico&rft.date=2017-09-01&rft.volume=64&rft.issue=9&rft.spage=1276&rft.epage=1284&rft.pages=1276-1284&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2017.2727980&rft_dat=%3Cproquest_cross%3E1923106149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934548214&rft_id=info:pmid/28742032&rft_ieee_id=7987023&rfr_iscdi=true |