Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging

High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2017-09, Vol.64 (9), p.1276-1284
Hauptverfasser: Boni, Enrico, Bassi, Luca, Dallai, Alessandro, Meacci, Valentino, Ramalli, Alessandro, Scaringella, Monica, Guidi, Francesco, Ricci, Stefano, Tortoli, Piero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue 9
container_start_page 1276
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 64
creator Boni, Enrico
Bassi, Luca
Dallai, Alessandro
Meacci, Valentino
Ramalli, Alessandro
Scaringella, Monica
Guidi, Francesco
Ricci, Stefano
Tortoli, Piero
description High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.
doi_str_mv 10.1109/TUFFC.2017.2727980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934548214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7987023</ieee_id><sourcerecordid>1923106149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRtFb_gIIsePGSOvuV3RylWCsUhNqcwyaZ1Eg-dDc59N-72urB0wzM8w4vDyFXDGaMQXK_SReL-YwD0zOuuU4MHJEJU1xFJlHqmEzAGBUJYHBGzr1_B2BSJvyUnHGjJQfBJyR9cMVbPWAxjA5pX1Hb0bQZnPX92JX0decHbGnVOzrvu6Huxn70dI22iTZ1i3RZb9_owtmwru2A9Lm127rbXpCTyjYeLw9zStLF42a-jFYvT8_zh1VUSM6GyMZxKG3KQgihSiNylQtlNZZGgtEQc1XqokJdCS0AgeeVzi2TLM8rZfPCiCm52__9cP3niH7I2toX2DS2w1A0YwkXDGImk4De_kPf-9F1oV2ghFTScCYDxfdU4XrvHVbZh6tb63YZg-xbevYjPfuWnh2kh9DN4fWYt1j-RX4tB-B6D9SI-HcOWQ1ciC_6HYSd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934548214</pqid></control><display><type>article</type><title>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</title><source>IEEE Xplore</source><creator>Boni, Enrico ; Bassi, Luca ; Dallai, Alessandro ; Meacci, Valentino ; Ramalli, Alessandro ; Scaringella, Monica ; Guidi, Francesco ; Ricci, Stefano ; Tortoli, Piero</creator><creatorcontrib>Boni, Enrico ; Bassi, Luca ; Dallai, Alessandro ; Meacci, Valentino ; Ramalli, Alessandro ; Scaringella, Monica ; Guidi, Francesco ; Ricci, Stefano ; Tortoli, Piero</creatorcontrib><description>High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2017.2727980</identifier><identifier>PMID: 28742032</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Array signal processing ; Digital signal processing ; Field programmable gate arrays ; High frame rate (HFR) ; Image acquisition ; Image transmission ; Imaging ; Ion beams ; Iron ; plane wave imaging ; Plane waves ; Radio frequency ; Real time ; Real-time systems ; ULA-OP ; Ultrasonic imaging ; Ultrasonic scanners</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-09, Vol.64 (9), p.1276-1284</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</citedby><cites>FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</cites><orcidid>0000-0002-7984-3128 ; 0000-0002-9899-8782 ; 0000-0002-7410-6057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7987023$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28742032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boni, Enrico</creatorcontrib><creatorcontrib>Bassi, Luca</creatorcontrib><creatorcontrib>Dallai, Alessandro</creatorcontrib><creatorcontrib>Meacci, Valentino</creatorcontrib><creatorcontrib>Ramalli, Alessandro</creatorcontrib><creatorcontrib>Scaringella, Monica</creatorcontrib><creatorcontrib>Guidi, Francesco</creatorcontrib><creatorcontrib>Ricci, Stefano</creatorcontrib><creatorcontrib>Tortoli, Piero</creatorcontrib><title>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.</description><subject>Array signal processing</subject><subject>Digital signal processing</subject><subject>Field programmable gate arrays</subject><subject>High frame rate (HFR)</subject><subject>Image acquisition</subject><subject>Image transmission</subject><subject>Imaging</subject><subject>Ion beams</subject><subject>Iron</subject><subject>plane wave imaging</subject><subject>Plane waves</subject><subject>Radio frequency</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>ULA-OP</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic scanners</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRtFb_gIIsePGSOvuV3RylWCsUhNqcwyaZ1Eg-dDc59N-72urB0wzM8w4vDyFXDGaMQXK_SReL-YwD0zOuuU4MHJEJU1xFJlHqmEzAGBUJYHBGzr1_B2BSJvyUnHGjJQfBJyR9cMVbPWAxjA5pX1Hb0bQZnPX92JX0decHbGnVOzrvu6Huxn70dI22iTZ1i3RZb9_owtmwru2A9Lm127rbXpCTyjYeLw9zStLF42a-jFYvT8_zh1VUSM6GyMZxKG3KQgihSiNylQtlNZZGgtEQc1XqokJdCS0AgeeVzi2TLM8rZfPCiCm52__9cP3niH7I2toX2DS2w1A0YwkXDGImk4De_kPf-9F1oV2ghFTScCYDxfdU4XrvHVbZh6tb63YZg-xbevYjPfuWnh2kh9DN4fWYt1j-RX4tB-B6D9SI-HcOWQ1ciC_6HYSd</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Boni, Enrico</creator><creator>Bassi, Luca</creator><creator>Dallai, Alessandro</creator><creator>Meacci, Valentino</creator><creator>Ramalli, Alessandro</creator><creator>Scaringella, Monica</creator><creator>Guidi, Francesco</creator><creator>Ricci, Stefano</creator><creator>Tortoli, Piero</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7984-3128</orcidid><orcidid>https://orcid.org/0000-0002-9899-8782</orcidid><orcidid>https://orcid.org/0000-0002-7410-6057</orcidid></search><sort><creationdate>20170901</creationdate><title>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</title><author>Boni, Enrico ; Bassi, Luca ; Dallai, Alessandro ; Meacci, Valentino ; Ramalli, Alessandro ; Scaringella, Monica ; Guidi, Francesco ; Ricci, Stefano ; Tortoli, Piero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a669808dc3335d83b5b35a7ed840870625d7cfe7f3730e02bf7ba141bbf5abc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Array signal processing</topic><topic>Digital signal processing</topic><topic>Field programmable gate arrays</topic><topic>High frame rate (HFR)</topic><topic>Image acquisition</topic><topic>Image transmission</topic><topic>Imaging</topic><topic>Ion beams</topic><topic>Iron</topic><topic>plane wave imaging</topic><topic>Plane waves</topic><topic>Radio frequency</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>ULA-OP</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic scanners</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boni, Enrico</creatorcontrib><creatorcontrib>Bassi, Luca</creatorcontrib><creatorcontrib>Dallai, Alessandro</creatorcontrib><creatorcontrib>Meacci, Valentino</creatorcontrib><creatorcontrib>Ramalli, Alessandro</creatorcontrib><creatorcontrib>Scaringella, Monica</creatorcontrib><creatorcontrib>Guidi, Francesco</creatorcontrib><creatorcontrib>Ricci, Stefano</creatorcontrib><creatorcontrib>Tortoli, Piero</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boni, Enrico</au><au>Bassi, Luca</au><au>Dallai, Alessandro</au><au>Meacci, Valentino</au><au>Ramalli, Alessandro</au><au>Scaringella, Monica</au><au>Guidi, Francesco</au><au>Ricci, Stefano</au><au>Tortoli, Piero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>64</volume><issue>9</issue><spage>1276</spage><epage>1284</epage><pages>1276-1284</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28742032</pmid><doi>10.1109/TUFFC.2017.2727980</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7984-3128</orcidid><orcidid>https://orcid.org/0000-0002-9899-8782</orcidid><orcidid>https://orcid.org/0000-0002-7410-6057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-09, Vol.64 (9), p.1276-1284
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_journals_1934548214
source IEEE Xplore
subjects Array signal processing
Digital signal processing
Field programmable gate arrays
High frame rate (HFR)
Image acquisition
Image transmission
Imaging
Ion beams
Iron
plane wave imaging
Plane waves
Radio frequency
Real time
Real-time systems
ULA-OP
Ultrasonic imaging
Ultrasonic scanners
title Architecture of an Ultrasound System for Continuous Real-Time High Frame Rate Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20of%20an%20Ultrasound%20System%20for%20Continuous%20Real-Time%20High%20Frame%20Rate%20Imaging&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Boni,%20Enrico&rft.date=2017-09-01&rft.volume=64&rft.issue=9&rft.spage=1276&rft.epage=1284&rft.pages=1276-1284&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2017.2727980&rft_dat=%3Cproquest_cross%3E1923106149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934548214&rft_id=info:pmid/28742032&rft_ieee_id=7987023&rfr_iscdi=true