Stability theory for a two-dimensional channel
A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2017-08, Vol.57 (8), p.1320-1334 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1334 |
---|---|
container_issue | 8 |
container_start_page | 1320 |
container_title | Computational mathematics and mathematical physics |
container_volume | 57 |
creator | Troshkin, O. V. |
description | A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented. |
doi_str_mv | 10.1134/S0965542517080115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934540790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934540790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRsFZ_gLuA69T3Mh_JLKWoFQouquswmbyxKWmmzqRI_r0JdSGIq7e451wel7FbhAUiF_cb0EpKkUnMoQBEecZmKKVMlVLZOZtNcTrll-wqxh0AKl3wGVtselM1bdMPSb8lH4bE-ZCYpP_yad3sqYuN70yb2K3pOmqv2YUzbaSbnztn70-Pb8tVun59flk-rFPLUfVpwR0IIF4V4Aqy3DjiOSrpajJCKXCcLBG3Kq9lLTCz4Ajruiq0II2g-ZzdnXoPwX8eKfblzh_D-EgsUXMhBeQaRgpPlA0-xkCuPIRmb8JQIpTTLOWfWUYnOzlxZLsPCr-a_5W-AWepY1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934540790</pqid></control><display><type>article</type><title>Stability theory for a two-dimensional channel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Troshkin, O. V.</creator><creatorcontrib>Troshkin, O. V.</creatorcontrib><description>A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517080115</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational fluid dynamics ; Computational Mathematics and Numerical Analysis ; Dimensional stability ; Flow stability ; Fluid flow ; Incompressible flow ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Steady flow ; Topological manifolds ; Two dimensional flow</subject><ispartof>Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1320-1334</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</citedby><cites>FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542517080115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542517080115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Troshkin, O. V.</creatorcontrib><title>Stability theory for a two-dimensional channel</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.</description><subject>Computational fluid dynamics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dimensional stability</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Steady flow</subject><subject>Topological manifolds</subject><subject>Two dimensional flow</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AURQdRsFZ_gLuA69T3Mh_JLKWoFQouquswmbyxKWmmzqRI_r0JdSGIq7e451wel7FbhAUiF_cb0EpKkUnMoQBEecZmKKVMlVLZOZtNcTrll-wqxh0AKl3wGVtselM1bdMPSb8lH4bE-ZCYpP_yad3sqYuN70yb2K3pOmqv2YUzbaSbnztn70-Pb8tVun59flk-rFPLUfVpwR0IIF4V4Aqy3DjiOSrpajJCKXCcLBG3Kq9lLTCz4Ajruiq0II2g-ZzdnXoPwX8eKfblzh_D-EgsUXMhBeQaRgpPlA0-xkCuPIRmb8JQIpTTLOWfWUYnOzlxZLsPCr-a_5W-AWepY1Q</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Troshkin, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Stability theory for a two-dimensional channel</title><author>Troshkin, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dimensional stability</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Steady flow</topic><topic>Topological manifolds</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troshkin, O. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troshkin, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability theory for a two-dimensional channel</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>57</volume><issue>8</issue><spage>1320</spage><epage>1334</epage><pages>1320-1334</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517080115</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1320-1334 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_1934540790 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational fluid dynamics Computational Mathematics and Numerical Analysis Dimensional stability Flow stability Fluid flow Incompressible flow Mathematical analysis Mathematics Mathematics and Statistics Steady flow Topological manifolds Two dimensional flow |
title | Stability theory for a two-dimensional channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20theory%20for%20a%20two-dimensional%20channel&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Troshkin,%20O.%20V.&rft.date=2017-08-01&rft.volume=57&rft.issue=8&rft.spage=1320&rft.epage=1334&rft.pages=1320-1334&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517080115&rft_dat=%3Cproquest_cross%3E1934540790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934540790&rft_id=info:pmid/&rfr_iscdi=true |