Stability theory for a two-dimensional channel

A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2017-08, Vol.57 (8), p.1320-1334
1. Verfasser: Troshkin, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 8
container_start_page 1320
container_title Computational mathematics and mathematical physics
container_volume 57
creator Troshkin, O. V.
description A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.
doi_str_mv 10.1134/S0965542517080115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934540790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934540790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRsFZ_gLuA69T3Mh_JLKWoFQouquswmbyxKWmmzqRI_r0JdSGIq7e451wel7FbhAUiF_cb0EpKkUnMoQBEecZmKKVMlVLZOZtNcTrll-wqxh0AKl3wGVtselM1bdMPSb8lH4bE-ZCYpP_yad3sqYuN70yb2K3pOmqv2YUzbaSbnztn70-Pb8tVun59flk-rFPLUfVpwR0IIF4V4Aqy3DjiOSrpajJCKXCcLBG3Kq9lLTCz4Ajruiq0II2g-ZzdnXoPwX8eKfblzh_D-EgsUXMhBeQaRgpPlA0-xkCuPIRmb8JQIpTTLOWfWUYnOzlxZLsPCr-a_5W-AWepY1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934540790</pqid></control><display><type>article</type><title>Stability theory for a two-dimensional channel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Troshkin, O. V.</creator><creatorcontrib>Troshkin, O. V.</creatorcontrib><description>A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517080115</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational fluid dynamics ; Computational Mathematics and Numerical Analysis ; Dimensional stability ; Flow stability ; Fluid flow ; Incompressible flow ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Steady flow ; Topological manifolds ; Two dimensional flow</subject><ispartof>Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1320-1334</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</citedby><cites>FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542517080115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542517080115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Troshkin, O. V.</creatorcontrib><title>Stability theory for a two-dimensional channel</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.</description><subject>Computational fluid dynamics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dimensional stability</subject><subject>Flow stability</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Steady flow</subject><subject>Topological manifolds</subject><subject>Two dimensional flow</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AURQdRsFZ_gLuA69T3Mh_JLKWoFQouquswmbyxKWmmzqRI_r0JdSGIq7e451wel7FbhAUiF_cb0EpKkUnMoQBEecZmKKVMlVLZOZtNcTrll-wqxh0AKl3wGVtselM1bdMPSb8lH4bE-ZCYpP_yad3sqYuN70yb2K3pOmqv2YUzbaSbnztn70-Pb8tVun59flk-rFPLUfVpwR0IIF4V4Aqy3DjiOSrpajJCKXCcLBG3Kq9lLTCz4Ajruiq0II2g-ZzdnXoPwX8eKfblzh_D-EgsUXMhBeQaRgpPlA0-xkCuPIRmb8JQIpTTLOWfWUYnOzlxZLsPCr-a_5W-AWepY1Q</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Troshkin, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Stability theory for a two-dimensional channel</title><author>Troshkin, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-83f040e3b80f8ec3afe37165fdea4660f3ecee3c67d5d412c0fe1ddb894e91093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dimensional stability</topic><topic>Flow stability</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Steady flow</topic><topic>Topological manifolds</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troshkin, O. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troshkin, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability theory for a two-dimensional channel</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>57</volume><issue>8</issue><spage>1320</spage><epage>1334</epage><pages>1320-1334</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517080115</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1320-1334
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_1934540790
source SpringerLink Journals - AutoHoldings
subjects Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Dimensional stability
Flow stability
Fluid flow
Incompressible flow
Mathematical analysis
Mathematics
Mathematics and Statistics
Steady flow
Topological manifolds
Two dimensional flow
title Stability theory for a two-dimensional channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20theory%20for%20a%20two-dimensional%20channel&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Troshkin,%20O.%20V.&rft.date=2017-08-01&rft.volume=57&rft.issue=8&rft.spage=1320&rft.epage=1334&rft.pages=1320-1334&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517080115&rft_dat=%3Cproquest_cross%3E1934540790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934540790&rft_id=info:pmid/&rfr_iscdi=true