Finding sets of solutions to systems of nonlinear inequalities
The problem of approximating the set of all solutions to a system of nonlinear inequalities is studied. A method based on the concept of nonuniform coverings is proposed. It allows one to obtain an interior and exterior approximation of this set with a prescribed accuracy. The efficiency of the meth...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2017-08, Vol.57 (8), p.1241-1247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1247 |
---|---|
container_issue | 8 |
container_start_page | 1241 |
container_title | Computational mathematics and mathematical physics |
container_volume | 57 |
creator | Evtushenko, Yu. G. Posypkin, M. A. Rybak, L. A. Turkin, A. V. |
description | The problem of approximating the set of all solutions to a system of nonlinear inequalities is studied. A method based on the concept of nonuniform coverings is proposed. It allows one to obtain an interior and exterior approximation of this set with a prescribed accuracy. The efficiency of the method is demonstrated by determining the workspace of a parallel robot. |
doi_str_mv | 10.1134/S0965542517080073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934536839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934536839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-17d947f86a8700bdef2e9d60fbb6e0cf02ce3b69b8062e2c156fac37696add603</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VJ00ybiyCL_2DBg3ouaZssWbrJbiY97Le363oQxMsMzPu9N_AYu-Zwy7ko795BoZRlIXkFNUAlTtiMSylzRCxO2ewg5wf9nF0QrQE4qlrM2P2T873zq4xMoizYjMIwJhc8ZSlktKdkNt93H_zgvNExm-Zu1INLztAlO7N6IHP1s-fs8-nxY_GSL9-eXxcPy7wTHFPOq16Vla1R1xVA2xtbGNUj2LZFA52FojOiRdXWgIUpOi7R6k5UqFD3Eyfm7OaYu41hNxpKzTqM0U8vG65EKQXWQk0UP1JdDETR2GYb3UbHfcOhOdTU_Klp8hRHD02sX5n4K_lf0xeMsmmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934536839</pqid></control><display><type>article</type><title>Finding sets of solutions to systems of nonlinear inequalities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Evtushenko, Yu. G. ; Posypkin, M. A. ; Rybak, L. A. ; Turkin, A. V.</creator><creatorcontrib>Evtushenko, Yu. G. ; Posypkin, M. A. ; Rybak, L. A. ; Turkin, A. V.</creatorcontrib><description>The problem of approximating the set of all solutions to a system of nonlinear inequalities is studied. A method based on the concept of nonuniform coverings is proposed. It allows one to obtain an interior and exterior approximation of this set with a prescribed accuracy. The efficiency of the method is demonstrated by determining the workspace of a parallel robot.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517080073</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Coverings ; Inequalities ; Mathematics ; Mathematics and Statistics ; Nonlinear systems ; Robotics</subject><ispartof>Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1241-1247</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-17d947f86a8700bdef2e9d60fbb6e0cf02ce3b69b8062e2c156fac37696add603</citedby><cites>FETCH-LOGICAL-c316t-17d947f86a8700bdef2e9d60fbb6e0cf02ce3b69b8062e2c156fac37696add603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542517080073$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542517080073$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Evtushenko, Yu. G.</creatorcontrib><creatorcontrib>Posypkin, M. A.</creatorcontrib><creatorcontrib>Rybak, L. A.</creatorcontrib><creatorcontrib>Turkin, A. V.</creatorcontrib><title>Finding sets of solutions to systems of nonlinear inequalities</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The problem of approximating the set of all solutions to a system of nonlinear inequalities is studied. A method based on the concept of nonuniform coverings is proposed. It allows one to obtain an interior and exterior approximation of this set with a prescribed accuracy. The efficiency of the method is demonstrated by determining the workspace of a parallel robot.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Coverings</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><subject>Robotics</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9VJ00ybiyCL_2DBg3ouaZssWbrJbiY97Le363oQxMsMzPu9N_AYu-Zwy7ko795BoZRlIXkFNUAlTtiMSylzRCxO2ewg5wf9nF0QrQE4qlrM2P2T873zq4xMoizYjMIwJhc8ZSlktKdkNt93H_zgvNExm-Zu1INLztAlO7N6IHP1s-fs8-nxY_GSL9-eXxcPy7wTHFPOq16Vla1R1xVA2xtbGNUj2LZFA52FojOiRdXWgIUpOi7R6k5UqFD3Eyfm7OaYu41hNxpKzTqM0U8vG65EKQXWQk0UP1JdDETR2GYb3UbHfcOhOdTU_Klp8hRHD02sX5n4K_lf0xeMsmmi</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Evtushenko, Yu. G.</creator><creator>Posypkin, M. A.</creator><creator>Rybak, L. A.</creator><creator>Turkin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Finding sets of solutions to systems of nonlinear inequalities</title><author>Evtushenko, Yu. G. ; Posypkin, M. A. ; Rybak, L. A. ; Turkin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-17d947f86a8700bdef2e9d60fbb6e0cf02ce3b69b8062e2c156fac37696add603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Coverings</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evtushenko, Yu. G.</creatorcontrib><creatorcontrib>Posypkin, M. A.</creatorcontrib><creatorcontrib>Rybak, L. A.</creatorcontrib><creatorcontrib>Turkin, A. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evtushenko, Yu. G.</au><au>Posypkin, M. A.</au><au>Rybak, L. A.</au><au>Turkin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding sets of solutions to systems of nonlinear inequalities</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>57</volume><issue>8</issue><spage>1241</spage><epage>1247</epage><pages>1241-1247</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The problem of approximating the set of all solutions to a system of nonlinear inequalities is studied. A method based on the concept of nonuniform coverings is proposed. It allows one to obtain an interior and exterior approximation of this set with a prescribed accuracy. The efficiency of the method is demonstrated by determining the workspace of a parallel robot.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517080073</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1241-1247 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_1934536839 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational Mathematics and Numerical Analysis Coverings Inequalities Mathematics Mathematics and Statistics Nonlinear systems Robotics |
title | Finding sets of solutions to systems of nonlinear inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20sets%20of%20solutions%20to%20systems%20of%20nonlinear%20inequalities&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Evtushenko,%20Yu.%20G.&rft.date=2017-08-01&rft.volume=57&rft.issue=8&rft.spage=1241&rft.epage=1247&rft.pages=1241-1247&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517080073&rft_dat=%3Cproquest_cross%3E1934536839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934536839&rft_id=info:pmid/&rfr_iscdi=true |