Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide

The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ω e and ω m and two propagation constant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2017-08, Vol.57 (8), p.1294-1309
Hauptverfasser: Valovik, D. V., Smol’kin, E. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1309
container_issue 8
container_start_page 1294
container_title Computational mathematics and mathematical physics
container_volume 57
creator Valovik, D. V.
Smol’kin, E. Yu
description The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ω e and ω m and two propagation constants γ ^ e and γ ^ m . The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ( γ ^ e , γ ^ m ) in proven and intervals of their localization are determined.
doi_str_mv 10.1134/S0965542517080127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934536740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934536740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a97817c5c74050cb138d38c40a948e9eed9fe710ea6905ab56bdd3b464be3f973</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wk-WqOsvgFix7Ui5eSptOSpdvUpFX235u6HgTxNIf3fZ5hBqFzSi4pZfzqmWgpBM8FVaQgNFcHaEGFEJmUMj9EiznO5vwYncS4IYRKXbAFenv0fed6MAEPwQ-mNaPzPfYNtn4aOqgxdGDH4Lem7WF0Fn-aD4jY9dhg64KduoTaXXLUwVnTfeft5Go4RUeN6SKc_cwler29eVndZ-unu4fV9TqzjMoxM1oVVFlhFSeC2IqyomaF5cRoXoAGqHUDihIwUhNhKiGrumYVl7wC1mjFluhi700HvE8Qx3Ljp9CnlSXVjAsmkzm16L5lg48xQFMOwW1N2JWUlPMLyz8vTEy-Z2Lq9i2EX-Z_oS8xn3P9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934536740</pqid></control><display><type>article</type><title>Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide</title><source>SpringerLink Journals - AutoHoldings</source><creator>Valovik, D. V. ; Smol’kin, E. Yu</creator><creatorcontrib>Valovik, D. V. ; Smol’kin, E. Yu</creatorcontrib><description>The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ω e and ω m and two propagation constants γ ^ e and γ ^ m . The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ( γ ^ e , γ ^ m ) in proven and intervals of their localization are determined.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517080127</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Cylindrical waves ; Differential equations ; Eigenvalues ; Electromagnetic radiation ; Mathematics ; Mathematics and Statistics ; Microwaves ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Position (location) ; Propagation ; Scientific apparatus &amp; instruments ; Wave propagation</subject><ispartof>Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1294-1309</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a97817c5c74050cb138d38c40a948e9eed9fe710ea6905ab56bdd3b464be3f973</citedby><cites>FETCH-LOGICAL-c316t-a97817c5c74050cb138d38c40a948e9eed9fe710ea6905ab56bdd3b464be3f973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542517080127$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542517080127$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Valovik, D. V.</creatorcontrib><creatorcontrib>Smol’kin, E. Yu</creatorcontrib><title>Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ω e and ω m and two propagation constants γ ^ e and γ ^ m . The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ( γ ^ e , γ ^ m ) in proven and intervals of their localization are determined.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Cylindrical waves</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Electromagnetic radiation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Microwaves</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Position (location)</subject><subject>Propagation</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Wave propagation</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wk-WqOsvgFix7Ui5eSptOSpdvUpFX235u6HgTxNIf3fZ5hBqFzSi4pZfzqmWgpBM8FVaQgNFcHaEGFEJmUMj9EiznO5vwYncS4IYRKXbAFenv0fed6MAEPwQ-mNaPzPfYNtn4aOqgxdGDH4Lem7WF0Fn-aD4jY9dhg64KduoTaXXLUwVnTfeft5Go4RUeN6SKc_cwler29eVndZ-unu4fV9TqzjMoxM1oVVFlhFSeC2IqyomaF5cRoXoAGqHUDihIwUhNhKiGrumYVl7wC1mjFluhi700HvE8Qx3Ljp9CnlSXVjAsmkzm16L5lg48xQFMOwW1N2JWUlPMLyz8vTEy-Z2Lq9i2EX-Z_oS8xn3P9</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Valovik, D. V.</creator><creator>Smol’kin, E. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide</title><author>Valovik, D. V. ; Smol’kin, E. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a97817c5c74050cb138d38c40a948e9eed9fe710ea6905ab56bdd3b464be3f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Cylindrical waves</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Electromagnetic radiation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Microwaves</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Position (location)</topic><topic>Propagation</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valovik, D. V.</creatorcontrib><creatorcontrib>Smol’kin, E. Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valovik, D. V.</au><au>Smol’kin, E. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>57</volume><issue>8</issue><spage>1294</spage><epage>1309</epage><pages>1294-1309</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ω e and ω m and two propagation constants γ ^ e and γ ^ m . The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ( γ ^ e , γ ^ m ) in proven and intervals of their localization are determined.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517080127</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2017-08, Vol.57 (8), p.1294-1309
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_1934536740
source SpringerLink Journals - AutoHoldings
subjects Computational Mathematics and Numerical Analysis
Cylindrical waves
Differential equations
Eigenvalues
Electromagnetic radiation
Mathematics
Mathematics and Statistics
Microwaves
Nonlinear differential equations
Nonlinear equations
Ordinary differential equations
Position (location)
Propagation
Scientific apparatus & instruments
Wave propagation
title Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20propagation%20of%20coupled%20electromagnetic%20waves%20in%20a%20circular%20cylindrical%20waveguide&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Valovik,%20D.%20V.&rft.date=2017-08-01&rft.volume=57&rft.issue=8&rft.spage=1294&rft.epage=1309&rft.pages=1294-1309&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517080127&rft_dat=%3Cproquest_cross%3E1934536740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934536740&rft_id=info:pmid/&rfr_iscdi=true