Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold
For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results...
Gespeichert in:
Veröffentlicht in: | Steel research international 2017-09, Vol.88 (9), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Steel research international |
container_volume | 88 |
creator | He, Meile Wang, Nan Chen, Min Xuan, Mingtao |
description | For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously.
Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal. |
doi_str_mv | 10.1002/srin.201600447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934207681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934207681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</originalsourceid><addsrcrecordid>eNqFkM9PwjAUxxejiQS5em7iedi3du12VBQlQTSCibembJ2UbCu0awj_vQWMHn2H9yPv830v-UbRNeAhYJzcOqvbYYKBYUwpP4t6kLE8JpR-noeeAcSEZeQyGji3xiFIljFOe9H2bbV3upA1km2JZr5R9jjNdeNr2WnTIlOhbqXQuPa6DNnsjuhCNRtlZeetQg_adVYv_RHXLbqvjWnQyLSdbr3xDo2kC-0XejF1eRVdVLJ2avBT-9HH-HExeo6nr0-T0d00LghwHnOWpEyCpEnOqmWepmGELAFZUgaESFoSHDaZJAAVkQqqKsl4pYCnhQoXSD-6Od3dWLP1ynVibbxtw0sBOaEJ5iyDQA1PVGGNc1ZVYmN1I-1eABYHZ8XBWfHrbBDkJ8FO12r_Dy3m75PZn_YbJl59Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934207681</pqid></control><display><type>article</type><title>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</title><source>Wiley Journals</source><creator>He, Meile ; Wang, Nan ; Chen, Min ; Xuan, Mingtao</creator><creatorcontrib>He, Meile ; Wang, Nan ; Chen, Min ; Xuan, Mingtao</creatorcontrib><description>For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously.
Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.201600447</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bloom ; Blooms (metal) ; Continuous casting ; Entrapment ; Equiaxed structure ; flow field ; Fluid dynamics ; Fluid flow ; Free surfaces ; High temperature ; Low alloy steels ; Mathematical models ; Molds ; Nonmetallic inclusions ; physical and numerical simulation ; Physical simulation ; Steel making ; Steel production ; Supercooling ; Temperature distribution ; temperature field ; Three dimensional models ; Wave height</subject><ispartof>Steel research international, 2017-09, Vol.88 (9), p.n/a</ispartof><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</citedby><cites>FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.201600447$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.201600447$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>He, Meile</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Xuan, Mingtao</creatorcontrib><title>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</title><title>Steel research international</title><description>For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously.
Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal.</description><subject>bloom</subject><subject>Blooms (metal)</subject><subject>Continuous casting</subject><subject>Entrapment</subject><subject>Equiaxed structure</subject><subject>flow field</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>High temperature</subject><subject>Low alloy steels</subject><subject>Mathematical models</subject><subject>Molds</subject><subject>Nonmetallic inclusions</subject><subject>physical and numerical simulation</subject><subject>Physical simulation</subject><subject>Steel making</subject><subject>Steel production</subject><subject>Supercooling</subject><subject>Temperature distribution</subject><subject>temperature field</subject><subject>Three dimensional models</subject><subject>Wave height</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUxxejiQS5em7iedi3du12VBQlQTSCibembJ2UbCu0awj_vQWMHn2H9yPv830v-UbRNeAhYJzcOqvbYYKBYUwpP4t6kLE8JpR-noeeAcSEZeQyGji3xiFIljFOe9H2bbV3upA1km2JZr5R9jjNdeNr2WnTIlOhbqXQuPa6DNnsjuhCNRtlZeetQg_adVYv_RHXLbqvjWnQyLSdbr3xDo2kC-0XejF1eRVdVLJ2avBT-9HH-HExeo6nr0-T0d00LghwHnOWpEyCpEnOqmWepmGELAFZUgaESFoSHDaZJAAVkQqqKsl4pYCnhQoXSD-6Od3dWLP1ynVibbxtw0sBOaEJ5iyDQA1PVGGNc1ZVYmN1I-1eABYHZ8XBWfHrbBDkJ8FO12r_Dy3m75PZn_YbJl59Hg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>He, Meile</creator><creator>Wang, Nan</creator><creator>Chen, Min</creator><creator>Xuan, Mingtao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201709</creationdate><title>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</title><author>He, Meile ; Wang, Nan ; Chen, Min ; Xuan, Mingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>bloom</topic><topic>Blooms (metal)</topic><topic>Continuous casting</topic><topic>Entrapment</topic><topic>Equiaxed structure</topic><topic>flow field</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>High temperature</topic><topic>Low alloy steels</topic><topic>Mathematical models</topic><topic>Molds</topic><topic>Nonmetallic inclusions</topic><topic>physical and numerical simulation</topic><topic>Physical simulation</topic><topic>Steel making</topic><topic>Steel production</topic><topic>Supercooling</topic><topic>Temperature distribution</topic><topic>temperature field</topic><topic>Three dimensional models</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Meile</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Xuan, Mingtao</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Meile</au><au>Wang, Nan</au><au>Chen, Min</au><au>Xuan, Mingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</atitle><jtitle>Steel research international</jtitle><date>2017-09</date><risdate>2017</risdate><volume>88</volume><issue>9</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously.
Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.201600447</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1611-3683 |
ispartof | Steel research international, 2017-09, Vol.88 (9), p.n/a |
issn | 1611-3683 1869-344X |
language | eng |
recordid | cdi_proquest_journals_1934207681 |
source | Wiley Journals |
subjects | bloom Blooms (metal) Continuous casting Entrapment Equiaxed structure flow field Fluid dynamics Fluid flow Free surfaces High temperature Low alloy steels Mathematical models Molds Nonmetallic inclusions physical and numerical simulation Physical simulation Steel making Steel production Supercooling Temperature distribution temperature field Three dimensional models Wave height |
title | Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20Numerical%20Simulation%20of%20the%20Fluid%20Flow%20and%20Temperature%20Distribution%20in%20Bloom%20Continuous%20Casting%20Mold&rft.jtitle=Steel%20research%20international&rft.au=He,%20Meile&rft.date=2017-09&rft.volume=88&rft.issue=9&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.201600447&rft_dat=%3Cproquest_cross%3E1934207681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934207681&rft_id=info:pmid/&rfr_iscdi=true |