Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold

For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2017-09, Vol.88 (9), p.n/a
Hauptverfasser: He, Meile, Wang, Nan, Chen, Min, Xuan, Mingtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Steel research international
container_volume 88
creator He, Meile
Wang, Nan
Chen, Min
Xuan, Mingtao
description For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously. Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal.
doi_str_mv 10.1002/srin.201600447
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934207681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934207681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</originalsourceid><addsrcrecordid>eNqFkM9PwjAUxxejiQS5em7iedi3du12VBQlQTSCibembJ2UbCu0awj_vQWMHn2H9yPv830v-UbRNeAhYJzcOqvbYYKBYUwpP4t6kLE8JpR-noeeAcSEZeQyGji3xiFIljFOe9H2bbV3upA1km2JZr5R9jjNdeNr2WnTIlOhbqXQuPa6DNnsjuhCNRtlZeetQg_adVYv_RHXLbqvjWnQyLSdbr3xDo2kC-0XejF1eRVdVLJ2avBT-9HH-HExeo6nr0-T0d00LghwHnOWpEyCpEnOqmWepmGELAFZUgaESFoSHDaZJAAVkQqqKsl4pYCnhQoXSD-6Od3dWLP1ynVibbxtw0sBOaEJ5iyDQA1PVGGNc1ZVYmN1I-1eABYHZ8XBWfHrbBDkJ8FO12r_Dy3m75PZn_YbJl59Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934207681</pqid></control><display><type>article</type><title>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</title><source>Wiley Journals</source><creator>He, Meile ; Wang, Nan ; Chen, Min ; Xuan, Mingtao</creator><creatorcontrib>He, Meile ; Wang, Nan ; Chen, Min ; Xuan, Mingtao</creatorcontrib><description>For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously. Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.201600447</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bloom ; Blooms (metal) ; Continuous casting ; Entrapment ; Equiaxed structure ; flow field ; Fluid dynamics ; Fluid flow ; Free surfaces ; High temperature ; Low alloy steels ; Mathematical models ; Molds ; Nonmetallic inclusions ; physical and numerical simulation ; Physical simulation ; Steel making ; Steel production ; Supercooling ; Temperature distribution ; temperature field ; Three dimensional models ; Wave height</subject><ispartof>Steel research international, 2017-09, Vol.88 (9), p.n/a</ispartof><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</citedby><cites>FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.201600447$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.201600447$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>He, Meile</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Xuan, Mingtao</creatorcontrib><title>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</title><title>Steel research international</title><description>For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously. Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal.</description><subject>bloom</subject><subject>Blooms (metal)</subject><subject>Continuous casting</subject><subject>Entrapment</subject><subject>Equiaxed structure</subject><subject>flow field</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>High temperature</subject><subject>Low alloy steels</subject><subject>Mathematical models</subject><subject>Molds</subject><subject>Nonmetallic inclusions</subject><subject>physical and numerical simulation</subject><subject>Physical simulation</subject><subject>Steel making</subject><subject>Steel production</subject><subject>Supercooling</subject><subject>Temperature distribution</subject><subject>temperature field</subject><subject>Three dimensional models</subject><subject>Wave height</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAUxxejiQS5em7iedi3du12VBQlQTSCibembJ2UbCu0awj_vQWMHn2H9yPv830v-UbRNeAhYJzcOqvbYYKBYUwpP4t6kLE8JpR-noeeAcSEZeQyGji3xiFIljFOe9H2bbV3upA1km2JZr5R9jjNdeNr2WnTIlOhbqXQuPa6DNnsjuhCNRtlZeetQg_adVYv_RHXLbqvjWnQyLSdbr3xDo2kC-0XejF1eRVdVLJ2avBT-9HH-HExeo6nr0-T0d00LghwHnOWpEyCpEnOqmWepmGELAFZUgaESFoSHDaZJAAVkQqqKsl4pYCnhQoXSD-6Od3dWLP1ynVibbxtw0sBOaEJ5iyDQA1PVGGNc1ZVYmN1I-1eABYHZ8XBWfHrbBDkJ8FO12r_Dy3m75PZn_YbJl59Hg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>He, Meile</creator><creator>Wang, Nan</creator><creator>Chen, Min</creator><creator>Xuan, Mingtao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201709</creationdate><title>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</title><author>He, Meile ; Wang, Nan ; Chen, Min ; Xuan, Mingtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-76256a1a4296fb9552561821ad46133a4d3096f8a311f3ae1ff287fe175ce3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>bloom</topic><topic>Blooms (metal)</topic><topic>Continuous casting</topic><topic>Entrapment</topic><topic>Equiaxed structure</topic><topic>flow field</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>High temperature</topic><topic>Low alloy steels</topic><topic>Mathematical models</topic><topic>Molds</topic><topic>Nonmetallic inclusions</topic><topic>physical and numerical simulation</topic><topic>Physical simulation</topic><topic>Steel making</topic><topic>Steel production</topic><topic>Supercooling</topic><topic>Temperature distribution</topic><topic>temperature field</topic><topic>Three dimensional models</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Meile</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Xuan, Mingtao</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Meile</au><au>Wang, Nan</au><au>Chen, Min</au><au>Xuan, Mingtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold</atitle><jtitle>Steel research international</jtitle><date>2017-09</date><risdate>2017</risdate><volume>88</volume><issue>9</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>For the purpose of improving the quality of low‐alloy steel production, the influence of the submerged entry nozzle (SEN) on fluid flow and temperature field in a bloom mold sized 250 × 350 mm is investigated by using a 1:0.8 ratio water model and a three‐dimensional mathematical model. The results show that the level fluctuation with the one‐port SEN is weak (below 0.55 mm) and supercooling at free surface is relatively high (around 10.0 K), which go against the flux melting. Compared with the one‐port SEN, the high temperature zones of the mold for the two‐port and four‐port SEN concentrate in the upper part with fully developed equiaxed area. However, the highest mean wave height (around 2.91 mm) and the uneven distribution of temperature will cause the two‐port SEN slag entrapment and non‐uniform solidified shell. With the four‐port SEN, a reasonable level fluctuation (about 1.60 mm) and uniform supercooling (around 2.8 K) near the free surface will favor to heat transfer and the equiaxed crystal formation. The practical production shows that the application of four‐port SEN significantly improves the center equiaxed crystal ratio, and the center segregation indexes of carbon and chrome are effectively decreased with the non‐metallic inclusions grades obviously decreases simultaneously. Contrary with the one‐port SEN, the high temperature zones for the two‐port and four‐port SEN concentrate in the upper part of the mold with fully developed equiaxed area. Compared to the two‐port SEN, temperature distribution of the four‐port SEN is more well‐distributed, which is conducive to the uniformity of flux melting, thickness of solidified shell, and equiaxed crystal.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.201600447</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2017-09, Vol.88 (9), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_1934207681
source Wiley Journals
subjects bloom
Blooms (metal)
Continuous casting
Entrapment
Equiaxed structure
flow field
Fluid dynamics
Fluid flow
Free surfaces
High temperature
Low alloy steels
Mathematical models
Molds
Nonmetallic inclusions
physical and numerical simulation
Physical simulation
Steel making
Steel production
Supercooling
Temperature distribution
temperature field
Three dimensional models
Wave height
title Physical and Numerical Simulation of the Fluid Flow and Temperature Distribution in Bloom Continuous Casting Mold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20Numerical%20Simulation%20of%20the%20Fluid%20Flow%20and%20Temperature%20Distribution%20in%20Bloom%20Continuous%20Casting%20Mold&rft.jtitle=Steel%20research%20international&rft.au=He,%20Meile&rft.date=2017-09&rft.volume=88&rft.issue=9&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.201600447&rft_dat=%3Cproquest_cross%3E1934207681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934207681&rft_id=info:pmid/&rfr_iscdi=true