Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate
BACKGROUND Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures,...
Gespeichert in:
Veröffentlicht in: | Journal of chemical technology and biotechnology (1986) 2017-10, Vol.92 (10), p.2731-2738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2738 |
---|---|
container_issue | 10 |
container_start_page | 2731 |
container_title | Journal of chemical technology and biotechnology (1986) |
container_volume | 92 |
creator | Schaeffer, Nicolas Feng, Xiaofan Grimes, Sue Cheeseman, Christopher |
description | BACKGROUND
Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment.
RESULTS
To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles.
CONCLUSION
The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry |
doi_str_mv | 10.1002/jctb.5297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934187157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934187157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</originalsourceid><addsrcrecordid>eNp1kE1u2zAQhYmgAeI6WeQGBLIqUCckJVLWsjbSNoWBAkGyFihyGNOQRJs_cZVVjtBtb5J9bpKTVKq7zWJm3uKbeZiH0Dkll5QQdrVRsb7krCyO0ISSspjlQpAPaEKYmM8YL_gJ-hjChhAi5kxM0J9bUO4RfI-dwbLDfYzephZD8m47CvfLasDbtQtDeWy8a_FehgjYNMl5CAq6iGOqIeAUbPeAJV7415duQDSWymqrsHXd0Bu7S1Z_xvTt-XcLcd03trVaPrlmNFr32rsH6HBIjZERTtGxkU2As_9ziu6_Xt8tv89WP7_dLL-sZioTw3-c0EIoxUplCOc1JTmIQmRSM8JKQxlQoxRhwGmmdZ6rsqzBGFqwzPC5qfNsii4Od7fe7RKEWG1c8t1gWdEyy-m8oLwYqE8HSnkXggdTbb1tpe8rSqox-WpMvhqTH9irA7u3DfTvg9WP5d3i38ZfqViLIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934187157</pqid></control><display><type>article</type><title>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schaeffer, Nicolas ; Feng, Xiaofan ; Grimes, Sue ; Cheeseman, Christopher</creator><creatorcontrib>Schaeffer, Nicolas ; Feng, Xiaofan ; Grimes, Sue ; Cheeseman, Christopher</creatorcontrib><description>BACKGROUND
Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment.
RESULTS
To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles.
CONCLUSION
The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5297</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Acidic oxides ; Digestion ; Dilution ; Europium ; Fluorescence ; Fluorescent lamps ; fluorescent lighting phosphors ; Hazardous wastes ; hydrometallurgy ; Ionic liquids ; Ions ; Leaching ; Low cost ; Luminescence ; Oxalic acid ; Powder ; Rare earth elements ; Recovery ; Regeneration ; spent fluorescent lamps ; Stage separation ; strategic material recovery ; Sulfates ; Tubes ; Waste management ; Waste streams ; Yttrium ; Yttrium oxide</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2017-10, Vol.92 (10), p.2731-2738</ispartof><rights>2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</citedby><cites>FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</cites><orcidid>0000-0003-3513-1062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.5297$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.5297$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Schaeffer, Nicolas</creatorcontrib><creatorcontrib>Feng, Xiaofan</creatorcontrib><creatorcontrib>Grimes, Sue</creatorcontrib><creatorcontrib>Cheeseman, Christopher</creatorcontrib><title>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND
Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment.
RESULTS
To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles.
CONCLUSION
The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry</description><subject>Acidic oxides</subject><subject>Digestion</subject><subject>Dilution</subject><subject>Europium</subject><subject>Fluorescence</subject><subject>Fluorescent lamps</subject><subject>fluorescent lighting phosphors</subject><subject>Hazardous wastes</subject><subject>hydrometallurgy</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Leaching</subject><subject>Low cost</subject><subject>Luminescence</subject><subject>Oxalic acid</subject><subject>Powder</subject><subject>Rare earth elements</subject><subject>Recovery</subject><subject>Regeneration</subject><subject>spent fluorescent lamps</subject><subject>Stage separation</subject><subject>strategic material recovery</subject><subject>Sulfates</subject><subject>Tubes</subject><subject>Waste management</subject><subject>Waste streams</subject><subject>Yttrium</subject><subject>Yttrium oxide</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1u2zAQhYmgAeI6WeQGBLIqUCckJVLWsjbSNoWBAkGyFihyGNOQRJs_cZVVjtBtb5J9bpKTVKq7zWJm3uKbeZiH0Dkll5QQdrVRsb7krCyO0ISSspjlQpAPaEKYmM8YL_gJ-hjChhAi5kxM0J9bUO4RfI-dwbLDfYzephZD8m47CvfLasDbtQtDeWy8a_FehgjYNMl5CAq6iGOqIeAUbPeAJV7415duQDSWymqrsHXd0Bu7S1Z_xvTt-XcLcd03trVaPrlmNFr32rsH6HBIjZERTtGxkU2As_9ziu6_Xt8tv89WP7_dLL-sZioTw3-c0EIoxUplCOc1JTmIQmRSM8JKQxlQoxRhwGmmdZ6rsqzBGFqwzPC5qfNsii4Od7fe7RKEWG1c8t1gWdEyy-m8oLwYqE8HSnkXggdTbb1tpe8rSqox-WpMvhqTH9irA7u3DfTvg9WP5d3i38ZfqViLIQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Schaeffer, Nicolas</creator><creator>Feng, Xiaofan</creator><creator>Grimes, Sue</creator><creator>Cheeseman, Christopher</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3513-1062</orcidid></search><sort><creationdate>201710</creationdate><title>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</title><author>Schaeffer, Nicolas ; Feng, Xiaofan ; Grimes, Sue ; Cheeseman, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidic oxides</topic><topic>Digestion</topic><topic>Dilution</topic><topic>Europium</topic><topic>Fluorescence</topic><topic>Fluorescent lamps</topic><topic>fluorescent lighting phosphors</topic><topic>Hazardous wastes</topic><topic>hydrometallurgy</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Leaching</topic><topic>Low cost</topic><topic>Luminescence</topic><topic>Oxalic acid</topic><topic>Powder</topic><topic>Rare earth elements</topic><topic>Recovery</topic><topic>Regeneration</topic><topic>spent fluorescent lamps</topic><topic>Stage separation</topic><topic>strategic material recovery</topic><topic>Sulfates</topic><topic>Tubes</topic><topic>Waste management</topic><topic>Waste streams</topic><topic>Yttrium</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaeffer, Nicolas</creatorcontrib><creatorcontrib>Feng, Xiaofan</creatorcontrib><creatorcontrib>Grimes, Sue</creatorcontrib><creatorcontrib>Cheeseman, Christopher</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaeffer, Nicolas</au><au>Feng, Xiaofan</au><au>Grimes, Sue</au><au>Cheeseman, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2017-10</date><risdate>2017</risdate><volume>92</volume><issue>10</issue><spage>2731</spage><epage>2738</epage><pages>2731-2738</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND
Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment.
RESULTS
To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles.
CONCLUSION
The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jctb.5297</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3513-1062</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2575 |
ispartof | Journal of chemical technology and biotechnology (1986), 2017-10, Vol.92 (10), p.2731-2738 |
issn | 0268-2575 1097-4660 |
language | eng |
recordid | cdi_proquest_journals_1934187157 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acidic oxides Digestion Dilution Europium Fluorescence Fluorescent lamps fluorescent lighting phosphors Hazardous wastes hydrometallurgy Ionic liquids Ions Leaching Low cost Luminescence Oxalic acid Powder Rare earth elements Recovery Regeneration spent fluorescent lamps Stage separation strategic material recovery Sulfates Tubes Waste management Waste streams Yttrium Yttrium oxide |
title | Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20an%20yttrium%20europium%20oxide%20phosphor%20from%20waste%20fluorescent%20tubes%20using%20a%20Br%C3%B8nsted%20acidic%20ionic%20liquid,%201%E2%80%90methylimidazolium%20hydrogen%20sulfate&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Schaeffer,%20Nicolas&rft.date=2017-10&rft.volume=92&rft.issue=10&rft.spage=2731&rft.epage=2738&rft.pages=2731-2738&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5297&rft_dat=%3Cproquest_cross%3E1934187157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934187157&rft_id=info:pmid/&rfr_iscdi=true |