Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate

BACKGROUND Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2017-10, Vol.92 (10), p.2731-2738
Hauptverfasser: Schaeffer, Nicolas, Feng, Xiaofan, Grimes, Sue, Cheeseman, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2738
container_issue 10
container_start_page 2731
container_title Journal of chemical technology and biotechnology (1986)
container_volume 92
creator Schaeffer, Nicolas
Feng, Xiaofan
Grimes, Sue
Cheeseman, Christopher
description BACKGROUND Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment. RESULTS To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles. CONCLUSION The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry
doi_str_mv 10.1002/jctb.5297
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934187157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934187157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</originalsourceid><addsrcrecordid>eNp1kE1u2zAQhYmgAeI6WeQGBLIqUCckJVLWsjbSNoWBAkGyFihyGNOQRJs_cZVVjtBtb5J9bpKTVKq7zWJm3uKbeZiH0Dkll5QQdrVRsb7krCyO0ISSspjlQpAPaEKYmM8YL_gJ-hjChhAi5kxM0J9bUO4RfI-dwbLDfYzephZD8m47CvfLasDbtQtDeWy8a_FehgjYNMl5CAq6iGOqIeAUbPeAJV7415duQDSWymqrsHXd0Bu7S1Z_xvTt-XcLcd03trVaPrlmNFr32rsH6HBIjZERTtGxkU2As_9ziu6_Xt8tv89WP7_dLL-sZioTw3-c0EIoxUplCOc1JTmIQmRSM8JKQxlQoxRhwGmmdZ6rsqzBGFqwzPC5qfNsii4Od7fe7RKEWG1c8t1gWdEyy-m8oLwYqE8HSnkXggdTbb1tpe8rSqox-WpMvhqTH9irA7u3DfTvg9WP5d3i38ZfqViLIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934187157</pqid></control><display><type>article</type><title>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schaeffer, Nicolas ; Feng, Xiaofan ; Grimes, Sue ; Cheeseman, Christopher</creator><creatorcontrib>Schaeffer, Nicolas ; Feng, Xiaofan ; Grimes, Sue ; Cheeseman, Christopher</creatorcontrib><description>BACKGROUND Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment. RESULTS To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles. CONCLUSION The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5297</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Acidic oxides ; Digestion ; Dilution ; Europium ; Fluorescence ; Fluorescent lamps ; fluorescent lighting phosphors ; Hazardous wastes ; hydrometallurgy ; Ionic liquids ; Ions ; Leaching ; Low cost ; Luminescence ; Oxalic acid ; Powder ; Rare earth elements ; Recovery ; Regeneration ; spent fluorescent lamps ; Stage separation ; strategic material recovery ; Sulfates ; Tubes ; Waste management ; Waste streams ; Yttrium ; Yttrium oxide</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2017-10, Vol.92 (10), p.2731-2738</ispartof><rights>2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</citedby><cites>FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</cites><orcidid>0000-0003-3513-1062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.5297$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.5297$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Schaeffer, Nicolas</creatorcontrib><creatorcontrib>Feng, Xiaofan</creatorcontrib><creatorcontrib>Grimes, Sue</creatorcontrib><creatorcontrib>Cheeseman, Christopher</creatorcontrib><title>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment. RESULTS To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles. CONCLUSION The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry</description><subject>Acidic oxides</subject><subject>Digestion</subject><subject>Dilution</subject><subject>Europium</subject><subject>Fluorescence</subject><subject>Fluorescent lamps</subject><subject>fluorescent lighting phosphors</subject><subject>Hazardous wastes</subject><subject>hydrometallurgy</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Leaching</subject><subject>Low cost</subject><subject>Luminescence</subject><subject>Oxalic acid</subject><subject>Powder</subject><subject>Rare earth elements</subject><subject>Recovery</subject><subject>Regeneration</subject><subject>spent fluorescent lamps</subject><subject>Stage separation</subject><subject>strategic material recovery</subject><subject>Sulfates</subject><subject>Tubes</subject><subject>Waste management</subject><subject>Waste streams</subject><subject>Yttrium</subject><subject>Yttrium oxide</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1u2zAQhYmgAeI6WeQGBLIqUCckJVLWsjbSNoWBAkGyFihyGNOQRJs_cZVVjtBtb5J9bpKTVKq7zWJm3uKbeZiH0Dkll5QQdrVRsb7krCyO0ISSspjlQpAPaEKYmM8YL_gJ-hjChhAi5kxM0J9bUO4RfI-dwbLDfYzephZD8m47CvfLasDbtQtDeWy8a_FehgjYNMl5CAq6iGOqIeAUbPeAJV7415duQDSWymqrsHXd0Bu7S1Z_xvTt-XcLcd03trVaPrlmNFr32rsH6HBIjZERTtGxkU2As_9ziu6_Xt8tv89WP7_dLL-sZioTw3-c0EIoxUplCOc1JTmIQmRSM8JKQxlQoxRhwGmmdZ6rsqzBGFqwzPC5qfNsii4Od7fe7RKEWG1c8t1gWdEyy-m8oLwYqE8HSnkXggdTbb1tpe8rSqox-WpMvhqTH9irA7u3DfTvg9WP5d3i38ZfqViLIQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Schaeffer, Nicolas</creator><creator>Feng, Xiaofan</creator><creator>Grimes, Sue</creator><creator>Cheeseman, Christopher</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3513-1062</orcidid></search><sort><creationdate>201710</creationdate><title>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</title><author>Schaeffer, Nicolas ; Feng, Xiaofan ; Grimes, Sue ; Cheeseman, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3697-50176cc29cf055b104e6763ad2029f12e1fcc02e513dd44c99beff1723f58fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidic oxides</topic><topic>Digestion</topic><topic>Dilution</topic><topic>Europium</topic><topic>Fluorescence</topic><topic>Fluorescent lamps</topic><topic>fluorescent lighting phosphors</topic><topic>Hazardous wastes</topic><topic>hydrometallurgy</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Leaching</topic><topic>Low cost</topic><topic>Luminescence</topic><topic>Oxalic acid</topic><topic>Powder</topic><topic>Rare earth elements</topic><topic>Recovery</topic><topic>Regeneration</topic><topic>spent fluorescent lamps</topic><topic>Stage separation</topic><topic>strategic material recovery</topic><topic>Sulfates</topic><topic>Tubes</topic><topic>Waste management</topic><topic>Waste streams</topic><topic>Yttrium</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaeffer, Nicolas</creatorcontrib><creatorcontrib>Feng, Xiaofan</creatorcontrib><creatorcontrib>Grimes, Sue</creatorcontrib><creatorcontrib>Cheeseman, Christopher</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaeffer, Nicolas</au><au>Feng, Xiaofan</au><au>Grimes, Sue</au><au>Cheeseman, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2017-10</date><risdate>2017</risdate><volume>92</volume><issue>10</issue><spage>2731</spage><epage>2738</epage><pages>2731-2738</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND Spent fluorescent lamps, classified as hazardous waste in the EU, are segregated at source. Processes for the recovery of critical rare‐earth (RE) elements from the phosphor powder waste, however, often involve use of aggressive acid or alkali digestion, multi‐stage separation procedures, and production of large aqueous waste streams which require further treatment. RESULTS To overcome these difficulties phosphor powder pre‐treated with dilute HCl was leached with a 1:1 wt. [Hmim][HSO4]:H2O solution at a solid:liquid ratio of 5%, at 80 °C for 4 h with stirring at 300 rpm to recover 91.6 wt% of the Y and 97.7 wt% of the Eu present. The yttrium‐europium oxide (YOX), (Y0.95Eu0.05)2O3, recovered by precipitating the dissolved RE elements from the leach solution with oxalic acid and converting the oxalate to an oxide phase by heating, was characterised by FTIR, XRD and luminescence analysis. The analyses suggest the recovered oxide has the potential to be directly reused as YOX phosphor. Regeneration and reuse of the ionic liquid is achieved with only minor leaching efficiency losses found over four leaching/recovery cycles. CONCLUSION The recovery of yttrium europium oxide from waste fluorescent tube phosphor by a simple efficient low cost ionic liquid process has been developed. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.5297</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3513-1062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2017-10, Vol.92 (10), p.2731-2738
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_1934187157
source Wiley Online Library Journals Frontfile Complete
subjects Acidic oxides
Digestion
Dilution
Europium
Fluorescence
Fluorescent lamps
fluorescent lighting phosphors
Hazardous wastes
hydrometallurgy
Ionic liquids
Ions
Leaching
Low cost
Luminescence
Oxalic acid
Powder
Rare earth elements
Recovery
Regeneration
spent fluorescent lamps
Stage separation
strategic material recovery
Sulfates
Tubes
Waste management
Waste streams
Yttrium
Yttrium oxide
title Recovery of an yttrium europium oxide phosphor from waste fluorescent tubes using a Brønsted acidic ionic liquid, 1‐methylimidazolium hydrogen sulfate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20an%20yttrium%20europium%20oxide%20phosphor%20from%20waste%20fluorescent%20tubes%20using%20a%20Br%C3%B8nsted%20acidic%20ionic%20liquid,%201%E2%80%90methylimidazolium%20hydrogen%20sulfate&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Schaeffer,%20Nicolas&rft.date=2017-10&rft.volume=92&rft.issue=10&rft.spage=2731&rft.epage=2738&rft.pages=2731-2738&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5297&rft_dat=%3Cproquest_cross%3E1934187157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1934187157&rft_id=info:pmid/&rfr_iscdi=true